Results for 'unfolded protein response'

987 found
Order:
  1.  8
    Linking the unfolded protein response to bioactive lipid metabolism and signalling in the cell non‐autonomous extracellular communication of ER stress.Nicole T. Watt, Anna McGrane & Lee D. Roberts - 2023 - Bioessays 45 (8):2300029.
    The endoplasmic reticulum (ER) organelle is the key intracellular site of both protein and lipid biosynthesis. ER dysfunction, termed ER stress, can result in protein accretion within the ER and cell death; a pathophysiological process contributing to a range of metabolic diseases and cancers. ER stress leads to the activation of a protective signalling cascade termed the Unfolded Protein Response (UPR). However, chronic UPR activation can ultimately result in cellular apoptosis. Emerging evidence suggests that cells (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  6
    Mitochondrial protein import machinery conveys stress signals to the cytosol and beyond.Eirini Lionaki, Ilias Gkikas & Nektarios Tavernarakis - 2023 - Bioessays 45 (3):2200160.
    Mitochondria hold diverse and pivotal roles in fundamental processes that govern cell survival, differentiation, and death, in addition to organismal growth, maintenance, and aging. The mitochondrial protein import system is a major contributor to mitochondrial biogenesis and lies at the crossroads between mitochondrial and cellular homeostasis. Recent findings highlight the mitochondrial protein import system as a signaling hub, receiving inputs from other cellular compartments and adjusting its function accordingly. Impairment of protein import, in a physiological, or disease (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  38
    An Emerging Group of Membrane Property Sensors Controls the Physical State of Organellar Membranes to Maintain Their Identity.Toni Radanović, John Reinhard, Stephanie Ballweg, Kristina Pesek & Robert Ernst - 2018 - Bioessays 40 (5):1700250.
    The biological membranes of eukaryotic cells harbor sensitive surveillance systems to establish, sense, and maintain characteristic physicochemical properties that ultimately define organelle identity. They are fundamentally important for membrane homeostasis and play active roles in cellular signaling, protein sorting, and the formation of vesicular carriers. Here, we compare the molecular mechanisms of Mga2 and Ire1, two sensors involved in the regulation of fatty acid desaturation and the response to unfolded proteins and lipid bilayer stress in order to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  4.  19
    Mitochondrial quality control pathways as determinants of metabolic health.Ntsiki M. Held & Riekelt H. Houtkooper - 2015 - Bioessays 37 (8):867-876.
    Mitochondrial function is key for maintaining cellular health, while mitochondrial failure is associated with various pathologies, including inherited metabolic disorders and age‐related diseases. In order to maintain mitochondrial quality, several pathways of mitochondrial quality control have evolved. These systems monitor mitochondrial integrity through antioxidants, DNA repair systems, and chaperones and proteases involved in the mitochondrial unfolded protein response. Additional regulation of mitochondrial function involves dynamic exchange of components through mitochondrial fusion and fission. Sustained stress induces a selective (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  5.  92
    Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy.Günter U. Höglinger, Nadine M. Melhem, Dennis W. Dickson, Patrick M. A. Sleiman, Li-San Wang, Lambertus Klei, Rosa Rademakers, Rohan de Silva, Irene Litvan, David E. Riley, John C. van Swieten, Peter Heutink, Zbigniew K. Wszolek, Ryan J. Uitti, Jana Vandrovcova, Howard I. Hurtig, Rachel G. Gross, Walter Maetzler, Stefano Goldwurm, Eduardo Tolosa, Barbara Borroni, Pau Pastor, P. S. P. Genetics Study Group, Laura B. Cantwell, Mi Ryung Han, Allissa Dillman, Marcel P. van der Brug, J. Raphael Gibbs, Mark R. Cookson, Dena G. Hernandez, Andrew B. Singleton, Matthew J. Farrer, Chang-En Yu, Lawrence I. Golbe, Tamas Revesz, John Hardy, Andrew J. Lees, Bernie Devlin, Hakon Hakonarson, Ulrich Müller & Gerard D. Schellenberg - unknown
    Progressive supranuclear palsy is a movement disorder with prominent tau neuropathology. Brain diseases with abnormal tau deposits are called tauopathies, the most common of which is Alzheimer's disease. Environmental causes of tauopathies include repetitive head trauma associated with some sports. To identify common genetic variation contributing to risk for tauopathies, we carried out a genome-wide association study of 1,114 individuals with PSP and 3,247 controls followed by a second stage in which we genotyped 1,051 cases and 3,560 controls for the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  11
    Antibiotic use and abuse: A threat to mitochondria and chloroplasts with impact on research, health, and environment.Xu Wang, Dongryeol Ryu, Riekelt H. Houtkooper & Johan Auwerx - 2015 - Bioessays 37 (10):1045-1053.
    Recently, several studies have demonstrated that tetracyclines, the antibiotics most intensively used in livestock and that are also widely applied in biomedical research, interrupt mitochondrial proteostasis and physiology in animals ranging from round worms, fruit flies, and mice to human cell lines. Importantly, plant chloroplasts, like their mitochondria, are also under certain conditions vulnerable to these and other antibiotics that are leached into our environment. Together these endosymbiotic organelles are not only essential for cellular and organismal homeostasis stricto sensu, but (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  23
    Ribosomal Proteins Control Tumor Suppressor Pathways in Response to Nucleolar Stress.Frédéric Lessard, Léa Brakier-Gingras & Gerardo Ferbeyre - 2019 - Bioessays 41 (3):1800183.
    Ribosome biogenesis includes the making and processing of ribosomal RNAs, the biosynthesis of ribosomal proteins from their mRNAs in the cytosol and their transport to the nucleolus to assemble pre‐ribosomal particles. Several stresses including cellular senescence reduce nucleolar rRNA synthesis and maturation increasing the availability of ribosome‐free ribosomal proteins. Several ribosomal proteins can activate the p53 tumor suppressor pathway but cells without p53 can still arrest their proliferation in response to an imbalance between ribosomal proteins and mature rRNA production. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  2
    AUXIN RESPONSE FACTOR protein accumulation and function.Hongwei Jing & Lucia C. Strader - 2023 - Bioessays 45 (11):2300018.
    Auxin is a key regulator of plant developmental processes. Its effects on transcription are mediated by the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. ARFs tightly control specific auxin responses necessary for proper plant growth and development. Recent research has revealed that regulated ARF protein accumulation and ARF nucleo‐cytoplasmic partitioning can determine auxin transcriptional outputs. In this review, we explore these recent findings and consider the potential for regulated ARF accumulation in driving auxin responses in plants.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  14
    Lean forward: Genetic analysis of temperature‐sensitive mutants unfolds the secrets of oligomeric protein complex assembly.Michael McMurray - 2014 - Bioessays 36 (9):836-846.
    Multisubunit protein complexes are essential for cellular function. Genetic analysis of essential processes requires special tools, among which temperature‐sensitive (Ts) mutants have historically been crucial. Many researchers assume that the effect of temperature on such mutants is to drive their proteolytic destruction. In fact, degradation‐mediated elimination of mutant proteins likely explains only a fraction of the phenotypes associated with Ts mutants. Here I discuss insights gained from analysis of Ts mutants in oligomeric proteins, with particular focus on the study (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  10.  15
    RGS proteins as targets in the treatment of intestinal inflammation and visceral pain: New insights and future perspectives.Maciej Salaga, Martin Storr, Kirill A. Martemyanov & Jakub Fichna - 2016 - Bioessays 38 (4).
    Regulators of G protein signaling (RGS) proteins provide timely termination of G protein‐coupled receptor (GPCR) responses. Serving as a central control point in GPCR signaling cascades, RGS proteins are promising targets for drug development. In this review, we discuss the involvement of RGS proteins in the pathophysiology of the gastrointestinal inflammation and their potential to become a target for anti‐inflammatory drugs. Specifically, we evaluate the emerging evidence for modulation of selected receptor families: opioid, cannabinoid and serotonin by RGS (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  11.  4
    Fluid protein fold space and its implications.Lauren L. Porter - 2023 - Bioessays 45 (9):2300057.
    Fold‐switching proteins, which remodel their secondary and tertiary structures in response to cellular stimuli, suggest a new view of protein fold space. For decades, experimental evidence has indicated that protein fold space is discrete: dissimilar folds are encoded by dissimilar amino acid sequences. Challenging this assumption, fold‐switching proteins interconnect discrete groups of dissimilar protein folds, making protein fold space fluid. Three recent observations support the concept of fluid fold space: (1) some amino acid sequences interconvert (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  26
    G protein‐coupled receptors: the inside story.Kees Jalink & Wouter H. Moolenaar - 2010 - Bioessays 32 (1):13-16.
    Recent findings necessitate revision of the traditional view of G protein‐coupled receptor (GPCR) signaling and expand the diversity of mechanisms by which receptor signaling influences cell behavior in general. GPCRs elicit signals at the plasma membrane and are then rapidly removed from the cell surface by endocytosis. Internalization of GPCRs has long been thought to serve as a mechanism to terminate the production of second messengers such as cAMP. However, recent studies show that internalized GPCRs can continue to either (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  50
    G protein‐coupled receptors engage the mammalian Hippo pathway through F‐actin.Laura Regué, Fan Mou & Joseph Avruch - 2013 - Bioessays 35 (5):430-435.
    The Hippo pathway, a cascade of protein kinases that inhibits the oncogenic transcriptional coactivators YAP and TAZ, was discovered in Drosophila as a major determinant of organ size in development. Known modes of regulation involve surface proteins that mediate cell‐cell contact or determine epithelial cell polarity which, in a tissue‐specific manner, use intracellular complexes containing FERM domain and actin‐binding proteins to modulate the kinase activities or directly sequester YAP. Unexpectedly, recent work demonstrates that GPCRs, especially those signaling through Galpha12/13 (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  15
    S100 protein and down syndrome.Alexander Marks & Robert Allore - 1990 - Bioessays 12 (8):381-383.
    S100 protein is a low molecular weight calcium‐binding protein widely distributed in the central nervous system of vertebrates. Recent evidence suggests that S100 protein may play a role in the regulation of glial proliferation and neuronal differentiation. The gene for S100 protein has been mapped to the 21q22 region, a chromosomal locus whose duplication has been implicated in the generation of Down Syndrome (DS). This raises the possibility that abnormalities in S100 protein gene dosage at (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15.  35
    AraC protein: A love–hate relationship.Robert Schleif - 2003 - Bioessays 25 (3):274-282.
    In the bacterium Escherichia coli, the AraC protein positively and negatively regulates expression of the proteins required for the uptake and catabolism of the sugar L‐arabinose. This essay describes how work from my laboratory on this system spanning more than thirty years has aided our understanding of positive regulation, revealed DNA looping (a mechanism that explains many action‐at‐a‐distance phenomena) and, more recently, has uncovered the mechanism by which arabinose shifts AraC from a state where it prefers to bind to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  22
    Surprise: unfolding of facial expressions.Marret K. Noordewier & Eric van Dijk - 2019 - Cognition and Emotion 33 (5):915-930.
    ABSTRACTResponses to surprising events are dynamic. We argue that initial responses are primarily driven by the unexpectedness of the surprising event and reflect an interrupted and surprised state in which the outcome does not make sense yet. Later responses, after sense-making, are more likely to incorporate the valence of the outcome itself. To identify initial and later responses to surprising stimuli, we conducted two repetition-change studies and coded the general valence of facial expressions using computerised facial coding and specific facial (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  16
    SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA-damage-response proteins.Ana Traven & J.�rg Heierhorst - 2005 - Bioessays 27 (4):397-407.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  6
    Protein kinases: A diverse family of related proteins.Susan S. Taylor - 1987 - Bioessays 7 (1):24-29.
    Homologies in amino‐acid sequence indicate that all known protein kinases share a conserved catalytic core, and, thus, belong to a related family of proteins that have evolved in part from a common ancestoral origin. This family includes cellular kinases, oncogenic viral kinases and their protooncogene counterparts, and growth factor receptors. One of the simplest and certainly the best characterized of the protein kinases at the biochemical level is the kinase that is activated in response to cAMP. The (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19.  8
    The chaperonin cycle and protein folding.Peter Lund - 1994 - Bioessays 16 (4):229-231.
    The process of protein folding in the cell is now known to depend on the action of other proteins. These proteins include molecular chaperones, Which interact non‐covalently with proteins as they fold and improve the final yields of active protein in the cell. The precise mechanism by which molecular chaperones act is obscure. Experiments reported recently(1) show that for one molecular chaperone (Cpn60, typified by the E. coli protein GroEL), the folding reaction is driven by cycles of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  9
    Searching for Protein Folding Mechanisms: On the Insoluble Contrast Between Thermodynamic and Kinetic Explanatory Approaches.Gabriel Vallejos-Baccelliere & Davide Vecchi - 2023 - In João L. Cordovil, Gil Santos & Davide Vecchi (eds.), New Mechanism Explanation, Emergence and Reduction. Springer. pp. 109-137.
    The protein folding problem is one of the foundational problems of biochemistry and it is still considered unsolved. It basically consists of two main questions: what are the factors determining the stability of the protein’s native structure and how does the protein acquire it starting from an unfolded state. Since its first formulation, two main explanatory approaches have dominated the field of protein folding research: a thermodynamic approach focused on energetic features and a kinetic approach (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  21.  12
    Myelin Po‐protein, more than just a structural protein?Marie T. Filbin & Gihan I. Tennekoon - 1992 - Bioessays 14 (8):541-547.
    The protein Po has long been proposed to be responsible for the compact nature of peripheral myelin through interactions of both its extracellular and cytoplasmic domains. Recent studies support such a role for Po's extracellular region while more precise mapping of its adhesive domains are ongoing. As Po is a member of the immunoglobulin gene superfamily and perhaps bears the closest similarity to the ancestral molecule of this whole family, these studies may also have more general implications for adhesive (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  13
    A second chance for protein targeting/folding: Ubiquitination and deubiquitination of nascent proteins.Jacob A. Culver, Xia Li, Matthew Jordan & Malaiyalam Mariappan - 2022 - Bioessays 44 (6):2200014.
    Molecular chaperones in cells constantly monitor and bind to exposed hydrophobicity in newly synthesized proteins and assist them in folding or targeting to cellular membranes for insertion. However, proteins can be misfolded or mistargeted, which often causes hydrophobic amino acids to be exposed to the aqueous cytosol. Again, chaperones recognize exposed hydrophobicity in these proteins to prevent nonspecific interactions and aggregation, which are harmful to cells. The chaperone‐bound misfolded proteins are then decorated with ubiquitin chains denoting them for proteasomal degradation. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23.  17
    Insider trading: Extracellular matrix proteins and their non‐canonical intracellular roles.Andrew L. Hellewell & Josephine C. Adams - 2016 - Bioessays 38 (1):77-88.
    In metazoans, the extracellular matrix (ECM) provides a dynamic, heterogeneous microenvironment that has important supportive and instructive roles. Although the primary site of action of ECM proteins is extracellular, evidence is emerging for non‐canonical intracellular roles. Examples include osteopontin, thrombospondins, IGF‐binding protein 3 and biglycan, and relate to roles in transcription, cell‐stress responses, autophagy and cancer. These findings pose conceptual problems on how proteins signalled for secretion can be routed to the cytosol or nucleus, or can function in environments (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  24.  42
    Microtubule Inner Proteins: A Meshwork of Luminal Proteins Stabilizing the Doublet Microtubule.Muneyoshi Ichikawa & Khanh Huy Bui - 2018 - Bioessays 40 (3):1700209.
    Motile eukaryotic cilia and flagella are hair-like organelles responsible for cell motility and mucociliary clearance. Using cryo-electron tomography, it has been shown that the doublet microtubule, the cytoskeleton core of the cilia and flagella, has microtubule inner protein structures binding periodically inside its lumen. More recently, single-particle cryo-electron microscopy analyses of isolated doublet microtubules have shown that microtubule inner proteins form a meshwork inside the doublet microtubule. High-resolution structures revealed new types of interactions between the microtubule inner proteins and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25.  37
    "A critical note on the use of the term" phenocopy.".Antoine Danchin - 1980 - In Massimo Piattelli-Palmarini (ed.), Language and Learning: The Debate Between Jean Piaget and Noam Chomsky. Harvard University Press.
    The discovery of the concrete basis for genes, and especially the clarification of mechanisms regulating gene expressions (in particular those that bear on the stepwise processing of hereditary information from the sequences of DNA nucleotides to the proteins) was to give flesh to the concept of a genetic program, for these regulations introduce relationships of order between the various elements of information contained in the genes. These order relations are then revealed during the time-dependent expression of the genetic program. They (...)
    Direct download  
     
    Export citation  
     
    Bookmark   25 citations  
  26.  11
    Insect antibacterial proteins: Not just for insects and against bacteria.Deborah A. Kimbrell - 1991 - Bioessays 13 (12):657-663.
    In response to a bacterial infection, insects launch an array of countermeasures. Among these are the antibacterial proteins, which effectively lyse bacteria or are bacteriostatic. These proteins were generally assumed to be restricted to insects, yet recent information has shown some homologous counterparts in verte brates, including humans. Recent data have revealed that at least some of these proteins can also act against eukaryotic cells, including human infectious Parasites The latter activities have opened up new possibilities for disease control.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  9
    Nucleocytoplasmic trafficking of proteins: With or without Ran?Ursula Stochaj & Katherine L. Rother - 1999 - Bioessays 21 (7):579-589.
    Proteins and RNAs move between the nucleus and cytoplasm by translocation through nuclear pore complexes in the nuclear envelope. To do this, they require specific targeting signals, energy, and a cellular apparatus that catalyzes their transport. Several of the factors involved in nucleocytoplasmic trafficking of proteins have been identified and characterized in some detail. The emerging picture for nuclear transport proposes a central role for the small GTPase Ran and proteins with which it interacts. In particular, asymmetric distribution of these (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  8
    AMP‐activated protein kinase ‐ An archetypal protein kinase cascade?D. Grahame Hardie & Robert W. Mackintosh - 1992 - Bioessays 14 (10):699-704.
    Mammalian AMP‐activated protein kinase is the central component of a protein kinase cascade which inactivates three key enzymes involved in the synthesis or release of free fatty acids and cholesterol inside the cell. The kinase cascade is activated by elevation of AMP, and perhaps also by fatty acid and cholesterol metabolites. The system may fulfil a protective function, preventing damage caused by depletion of ATP or excessive intracellular release of free lipids, a type of stress response. Recent (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  16
    Molecular machinery required for protein transport from the endoplasmic reticulum to the golgi complex.Linda Hicke & Randy Schekman - 1990 - Bioessays 12 (6):253-258.
    The cellular machinery responsible for conveying proteins between the endoplasmic reticulum and the Golgi is being investigated using genetics and biochemistry. A role for vesicles in mediating protein traffic between the ER and the Golgi has been established by characterizing yeast mutants defective in this process, and by using recently developed cell‐free assays that measure ER to Golgi transport. These tools have also allowed the identification of several proteins crucial to intracellular protein trafficking. The characterization and possible functions (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  8
    JNK‐interacting protein 4 is a central molecule for lysosomal retrograde trafficking.Yukiko Sasazawa, Nobutaka Hattori & Shinji Saiki - 2023 - Bioessays 45 (11):2300052.
    Lysosomal positioning is an important factor in regulating cellular responses, including autophagy. Because proteins encoded by disease‐responsible genes are involved in lysosomal trafficking, proper intracellular lysosomal trafficking is thought to be essential for cellular homeostasis. In the past few years, the mechanisms of lysosomal trafficking have been elucidated with a focus on adapter proteins linking motor proteins to lysosomes. Here, we outline recent findings on the mechanisms of lysosomal trafficking by focusing on adapter protein c‐Jun NH2‐terminal kinase‐interacting protein (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  24
    Regulation of protein traffic in polarized epithelial cells.Keith E. Mostov & Michael H. Cardone - 1995 - Bioessays 17 (2):129-138.
    The plasma membrane of polarized epithelial cells is divided into apical and basolateral surfaces, with different compositions. Proteins can be sent directly from the trans‐Golgi network (TGN) to either surface, or can be sent first to one surface and then transcytosed to the other. The glycosyl phosphatidylinositol anchor is a signal for apical targeting. Signals in the cytoplasmic domain containing a β‐turn determine basolateral targeting and retrieval, and are related to other sorting signals. Transcytosed proteins, such as the polymeric immunoglobulin (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32.  10
    Calmodulin‐dependent protein kinase II.Hitoshi Fujisawa - 1990 - Bioessays 12 (1):27-29.
    Three multifunctional protein kinases, cyclic AMP‐dependent protein kinase, protein kinase C, and calmodulin‐dependent protein kinase II, are involved in signal transduction in response to their respective second messengers, cyclic AMP, diacylglycerol, and Ca2+. This review will summarize the key findings on calmodulin‐dependent protein kinase II.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33.  7
    Disulphide bonds and protein stability.Thomas E. Creighton - 1988 - Bioessays 8 (2‐3):57-63.
    The properties of disulphide bonds relevant to their roles in stabilizing protein conformation are reviewed. Natural disulphides can stabilize folded conformations substantially, in some cases to much greater extents than would be expected from just entropic effects on the unfolded state. The linkage relationship between conformational stability and disulphide stability is illustrated. Disulphides will not, however, increase protein stability if the disulphides are not maintained in the unfolded state or if instability is caused by processes, such (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34.  7
    Molecular dynamics studies reveal structural and functional features of the SARS‐CoV‐2 spike protein.Ludovico Pipitò, Roxana-Maria Rujan, Christopher A. Reynolds & Giuseppe Deganutti - 2022 - Bioessays 44 (9):2200060.
    The SARS‐CoV‐2 virus is responsible for the COVID‐19 pandemic the world experience since 2019. The protein responsible for the first steps of cell invasion, the spike protein, has probably received the most attention in light of its central role during infection. Computational approaches are among the tools employed by the scientific community in the enormous effort to study this new affliction. One of these methods, namely molecular dynamics (MD), has been used to characterize the function of the spike (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  7
    Iron regulatory proteins 1 and 2.Beric R. Henderson - 1996 - Bioessays 18 (9):739-746.
    Iron uptake and storage in mammalian cells is at least partly regulated at a posttranscriptional level by the iron regulatory proteins (IRP‐1 and IRP‐2). These cytoplasmic regulators share 79% similarity in protein sequence and bind tightly to conserved mRNA stem‐loops, named iron‐responsive elements (IREs). The IRP:IRE interaction underlies the regulation of translation and stability of several mRNAs central to iron metabolism. The question of why the cell requires two such closely related regulatory proteins may be resloved as we learn (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36.  11
    Werner syndrome protein, the MRE11 complex and ATR: menage‐à‐trois in guarding genome stability during DNA replication?Pietro Pichierri & Annapaola Franchitto - 2004 - Bioessays 26 (3):306-313.
    The correct execution of the DNA replication process is crucially import for the maintenance of genome integrity of the cell. Several types of sources, both endogenous and exogenous, can give rise to DNA damage leading to the DNA replication fork arrest. The processes by which replication blockage is sensed by checkpoint sensors and how the pathway leading to resolution of stalled forks is activated are still not completely understood. However, recent emerging evidence suggests that one candidate for a sensor of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  9
    FK506 binding protein 51 integrates pathways of adaptation.Theo Rein - 2016 - Bioessays 38 (9):894-902.
    This review portraits FK506 binding protein (FKBP) 51 as “reactivity protein” and collates recent publications to develop the concept of FKBP51 as contributor to different levels of adaptation. Adaptation is a fundamental process that enables unicellular and multicellular organisms to adjust their molecular circuits and structural conditions in reaction to environmental changes threatening their homeostasis. FKBP51 is known as chaperone and co‐chaperone of heat shock protein (HSP) 90, thus involved in processes ensuring correct protein folding in (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  25
    Polycomb group proteins: remembering how to catch chromatin during replication.Ram Parikshan Kumar - 2009 - Bioessays 31 (8):822-825.
    Polycomb group (PcG) proteins maintain the expression state of PcG‐responsive genes during development of multicellular organisms. Recent observations suggest that “the H3K27me3 modification” acts to maintain Polycomb repressive complex (PRC) 2, the enzyme that creates this modification, on replicating chromatin. This could in turn promote propagation of H3K27me3 on newly replicated daughter chromatin, and promote recruitment of PRC1. Other work suggests that PRC1‐class complexes can be maintained on replicating chromatin, at least in vitro, independently of H3K27me3. Thus, histone modifications and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39.  17
    Translational regulation by mRNA/protein interactions in eukaryotic cells: Ferritin and beyond.Öjar Melefors & Matthias W. Hentze - 1993 - Bioessays 15 (2):85-90.
    The expression of certain eukaryotic genes is – at least in part – controlled at the level of mRNA translation. The step of translational initiation represents the primary target for regulation. The regulation of the intracellular iron storage protein ferritin in response to iron levels provides a good example of translational control by a reversible RNA/protein interaction in the 5' untranslated region of an mRNA. We consider mechanisms by which mRNA/protein interactions may impede translation initiation and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  40.  14
    Fanconi anaemia proteins: Major roles in cell protection against oxidative damage.Giovanni Pagano & Hagop Youssoufian - 2003 - Bioessays 25 (6):589-595.
    Fanconi anaemia (FA) is a cancer‐prone genetic disorder that is characterised by cytogenetic instability and redox abnormalities. Although rare subtypes of FA (B, D1 and D2) have been implicated in DNA repair through links with BRCA1 and BRCA2, such a role has yet to be demonstrated for gene products of the common subtypes. Instead, these products have been strongly implicated in xenobiotic metabolism and redox homeostasis through interactions of FANCC with cytochrome P‐450 reductase and with glutathione S‐transferase, and of FANCG (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  41.  13
    The cytoskeleton and motor proteins of human schistosomes and their roles in surface maintenance and host–parasite interactions.Malcolm K. Jones, Geoffrey N. Gobert, Lihua Zhang, Philip Sunderland & Donald P. McManus - 2004 - Bioessays 26 (7):752-765.
    Schistosomes are parasitic blood flukes, responsible for significant human disease in tropical and developing nations. Here we review information on the organization of the cytoskeleton and associated motor proteins of schistosomes, with particular reference to the organization of the syncytial tegument, a unique cellular adaptation of these and other neodermatan flatworms. Extensive EST databases show that the molecular constituents of the cytoskeleton and associated molecular systems are likely to be similar to those of other eukaryotes, although there are potentially some (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42.  7
    The RNA‐binding protein HuD: a regulator of neuronal differentiation, maintenance and plasticity.Julie Deschênes-Furry, Nora Perrone-Bizzozero & Bernard J. Jasmin - 2006 - Bioessays 28 (8):822-833.
    AbstractmRNA stability is increasingly recognized as being essential for controlling the expression of a wide variety of transcripts during neuronal development and synaptic plasticity. In this context, the role of AU‐rich elements (ARE) contained within the 3′ untranslated region (UTR) of transcripts has now emerged as key because of their high incidence in a large number of cellular mRNAs. This important regulatory element is known to significantly modulate the longevity of mRNAs by interacting with available stabilizing or destabilizing RNA‐binding proteins (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  43.  27
    May the Fittest Protein Evolve: Favoring the Plant‐Specific Origin and Expansion of NAC Transcription Factors.Iny Elizebeth Mathew & Pinky Agarwal - 2018 - Bioessays 40 (8):1800018.
    Plant‐specific NAC transcription factors (TFs) evolve during the transition from aquatic to terrestrial plant life and are amplified to become one of the biggest TF families. This is because they regulate genes involved in water conductance and cell support. They also control flower and fruit formation. The review presented here focuses on various properties, regulatory intricacies, and developmental roles of NAC family members. Processes controlled by NACs depend majorly on their transcriptional properties. NACs can function as both activators and/or repressors. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  8
    Nuclear lamin proteins and the structure of the nuclear envelope: Where is the function?Frank D. McKeon - 1987 - Bioessays 7 (4):169-173.
    The nuclear envelope has recently become the object of intense scrutiny because it is the site of nuclear transport and is possibly involved in the organization of the interphase genome, thereby affecting gene expression. The major structural support for the nuclear envelope is the nuclear lamina, composed of the nuclear lamin proteins. They lie on the surface of the inner nuclear membrane and are in direct contact with the chromatin at the edge of the nucleus. The structure of the nuclear (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  22
    Germ Cells are Made Semiotically Competent During Evolution.Franco Giorgi & Luis Emilio Bruni - 2016 - Biosemiotics 9 (1):31-49.
    Germ cells are cross-roads of development and evolution. They define the origin of every new generation and, at the same time, represent the biological end-product of any mature organism. Germ cells are endowed with the following capacities: to store a self-descriptive program, to accumulate a protein-synthesizing machinery, and to incorporate enough nourishment to sustain embryonic development. To accomplish this goal, germ cells do not simply unfold a pre-determined program or realize a sole instructive role. On the contrary, due to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  6
    E4BP4/NFIL3, a PAR‐related bZIP factor with many roles.Ian G. Cowell - 2002 - Bioessays 24 (11):1023-1029.
    E4BP4, a mammalian basic leucine zipper (bZIP) transcription factor, was first identified through its ability to bind and repress viral promoter sequences. Subsequently, E4BP4 and homologues in other species have been implicated in a diverse range of processes including commitment to cell survival versus apoptosis, the anti‐inflammatory response and, most recently, in the mammalian circadian oscillatory mechanism. In some of these cases at least, E4BP4 appears to act antagonistically with members of the related PAR family of transcription factors with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  16
    Metamorphosis of a protein.Robert O. Ryan & John H. Law - 1984 - Bioessays 1 (6):250-252.
    All insects appear to have a transport lipoprotein in the hemolymph (blood) that is responsible for moving hydrophobic materials through aqueous compartments. This has been called lipophorin because it is believed to be a reversible transport shuttle. Since most insects undergo some degree of metamorphosis from larval stages to the adult, the need to transport hydrophobic materials or the nature of these materials may change in the course of the life span. This is especially marked in the case of the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  41
    Management Responses to Social Activism in an Era of Corporate Responsibility: A Case Study.Katinka C. Cranenburgh, Kellie Liket & Nigel Roome - 2013 - Journal of Business Ethics 118 (3):497-513.
    Social activism against companies has evolved in the 50 years since Rachel Carson first put the US chemical industry under pressure to halt the indiscriminate use of the chemical DDT. Many more companies have come under the spotlight of activist attention as the agenda social activists address has expanded, provoked in part by the internationalization of business. During the past fifteen years, companies have begun to formulate corporate responsibility (CR) policies and appointed management teams dedicated to CR, resulting in a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  49.  14
    Auxin‐binding proteins and their possible roles in auxin‐mediated plant cell growth.Alan M. Jones & Paruchuri V. Prasad - 1992 - Bioessays 14 (1):43-48.
    Like several other classes of hormones, the class of plant hormones called auxins exert myriad effects on cell development. While auxins are most noted for inducing cell elongation, they are also involved in cell division, cell differentiation, cell and organ polarity, and wound responsiveness. Consistent with this pleiotropy, is the recent identification of several putative auxin receptors that in theory could represent the primary elements of more than one auxin signal pathway leading to distinct responses or leading in parallel to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  51
    A Link Between Alzheimer's and Type II Diabetes Mellitus? Ca+2 -Mediated Signal Control and Protein Localization.Yuko Tsutsui & Franklin A. Hays - 2018 - Bioessays 40 (6):1700219.
    We propose protein localization dependent signal activation (PLDSA) as a model to describe pre‐existing protein partitioning between the cytosol, and membrane surface, as a means to modulate signal activation, specificity, and robustness. We apply PLDSA to explain possible molecular links between type II diabetes mellitus (T2DM) and Alzheimer's disease (AD) by describing Ca+2‐mediated interactions between the Src non‐receptor tyrosine kinase and p52Shc adaptor protein. We suggest that these interactions may serve as a contributing factor to disease development (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 987