Results for 'Godel's Incompleteness Theorem, Godel Sentences, Sound Theories, Peano's Arithmetic.'

1000+ found
Order:
  1.  25
    Generalizations of gödel’s incompleteness theorems for ∑n-definable theories of arithmetic.Makoto Kikuchi & Taishi Kurahashi - 2017 - Review of Symbolic Logic 10 (4):603-616.
    It is well known that Gödel’s incompleteness theorems hold for ∑1-definable theories containing Peano arithmetic. We generalize Gödel’s incompleteness theorems for arithmetically definable theories. First, we prove that every ∑n+1-definable ∑n-sound theory is incomplete. Secondly, we generalize and improve Jeroslow and Hájek’s results. That is, we prove that every consistent theory having ∏n+1set of theorems has a true but unprovable ∏nsentence. Lastly, we prove that no ∑n+1-definable ∑n-sound theory can prove its own ∑n-soundness. These three results (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  2. Soundness does not come for free (if at all).Kaave Lajevardi & Saeed Salehi - manuscript
    We respond to some of the points made by Bennet and Blanck (2022) concerning a previous publication of ours (2021).
    Direct download  
     
    Export citation  
     
    Bookmark  
  3. Can Gödel's Incompleteness Theorem be a Ground for Dialetheism?Seungrak Choi - 2017 - Korean Journal of Logic 20 (2):241-271.
    Dialetheism is the view that there exists a true contradiction. This paper ventures to suggest that Priest’s argument for Dialetheism from Gödel’s theorem is unconvincing as the lesson of Gödel’s proof (or Rosser’s proof) is that any sufficiently strong theories of arithmetic cannot be both complete and consistent. In addition, a contradiction is derivable in Priest’s inconsistent and complete arithmetic. An alternative argument for Dialetheism is given by applying Gödel sentence to the inconsistent and complete theory of arithmetic. We argue, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  4. Godel's theorem: A proof from the book?Peter Smith - unknown
    Here’s one version G¨ odel’s 1931 First Incompleteness Theorem: If T is a nice, sound theory of arithmetic, then it is incomplete, i.e. there are arithmetical sentences ϕ such that T proves neither ϕ nor ¬ϕ. There are three things here to explain straight away.
     
    Export citation  
     
    Bookmark  
  5. Consistency, Turing Computability and Gödel’s First Incompleteness Theorem.Robert F. Hadley - 2008 - Minds and Machines 18 (1):1-15.
    It is well understood and appreciated that Gödel’s Incompleteness Theorems apply to sufficiently strong, formal deductive systems. In particular, the theorems apply to systems which are adequate for conventional number theory. Less well known is that there exist algorithms which can be applied to such a system to generate a gödel-sentence for that system. Although the generation of a sentence is not equivalent to proving its truth, the present paper argues that the existence of these algorithms, when conjoined with (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Gödel's Incompleteness Theorems.Panu Raatikainen - 2013 - The Stanford Encyclopedia of Philosophy (Winter 2013 Edition), Edward N. Zalta (Ed.).
    Gödel's two incompleteness theorems are among the most important results in modern logic, and have deep implications for various issues. They concern the limits of provability in formal axiomatic theories. The first incompleteness theorem states that in any consistent formal system F within which a certain amount of arithmetic can be carried out, there are statements of the language of F which can neither be proved nor disproved in F. According to the second incompleteness theorem, such a (...)
    Direct download  
     
    Export citation  
     
    Bookmark   22 citations  
  7.  52
    An Incompleteness Theorem Via Ordinal Analysis.James Walsh - 2024 - Journal of Symbolic Logic 89 (1):80-96.
    We present an analogue of Gödel’s second incompleteness theorem for systems of second-order arithmetic. Whereas Gödel showed that sufficiently strong theories that are $\Pi ^0_1$ -sound and $\Sigma ^0_1$ -definable do not prove their own $\Pi ^0_1$ -soundness, we prove that sufficiently strong theories that are $\Pi ^1_1$ -sound and $\Sigma ^1_1$ -definable do not prove their own $\Pi ^1_1$ -soundness. Our proof does not involve the construction of a self-referential sentence but rather relies on ordinal analysis.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  8.  8
    Gödel's Incompleteness Theorems.Raymond Smullyan - 2017 - In Lou Goble (ed.), The Blackwell Guide to Philosophical Logic. Oxford, UK: Blackwell. pp. 72–89.
    At the turn of the century, there appeared two comprehensive mathematical systems, which were indeed so vast that it was taken for granted that all mathematics could be decided on the basis of them. However, in 1931, Kurt Gödel surprised the entire mathematical world with his epoch‐making paper which begins with the following startling words: The development of mathematics in the direction of greater precision has led to large areas of it being formalized, so that proofs can be carried out (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  9. Kurt Gödel, paper on the incompleteness theorems (1931).Richard Zach - 2004 - In Ivor Grattan-Guinness (ed.), Landmark Writings in Mathematics. North-Holland. pp. 917-925.
    This chapter describes Kurt Gödel's paper on the incompleteness theorems. Gödel's incompleteness results are two of the most fundamental and important contributions to logic and the foundations of mathematics. It had been assumed that first-order number theory is complete in the sense that any sentence in the language of number theory would be either provable from the axioms or refutable. Gödel's first incompleteness theorem showed that this assumption was false: it states that there are sentences of number (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  22
    Gödel's Incompleteness Theorems.Juliette Kennedy - 2022 - Cambridge University Press.
    This Element takes a deep dive into Gödel's 1931 paper giving the first presentation of the Incompleteness Theorems, opening up completely passages in it that might possibly puzzle the student, such as the mysterious footnote 48a. It considers the main ingredients of Gödel's proof: arithmetization, strong representability, and the Fixed Point Theorem in a layered fashion, returning to their various aspects: semantic, syntactic, computational, philosophical and mathematical, as the topic arises. It samples some of the most important proofs of (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  11. Incompleteness and inconsistency.Stewart Shapiro - 2002 - Mind 111 (444):817-832.
    Graham Priest's In Contradiction (Dordrecht: Martinus Nijhoff Publishers, 1987, chapter 3) contains an argument concerning the intuitive, or ‘naïve’ notion of (arithmetic) proof, or provability. He argues that the intuitively provable arithmetic sentences constitute a recursively enumerable set, which has a Gödel sentence which is itself intuitively provable. The incompleteness theorem does not apply, since the set of provable arithmetic sentences is not consistent. The purpose of this article is to sharpen Priest's argument, avoiding reference to informal notions, consensus, (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  12. There May Be Many Arithmetical Gödel Sentences.Kaave Lajevardi & Saeed Salehi - 2021 - Philosophia Mathematica 29 (2):278–287.
    We argue that, under the usual assumptions for sufficiently strong arithmetical theories that are subject to Gödel’s First Incompleteness Theorem, one cannot, without impropriety, talk about *the* Gödel sentence of the theory. The reason is that, without violating the requirements of Gödel’s theorem, there could be a true sentence and a false one each of which is provably equivalent to its own unprovability in the theory if the theory is unsound.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Incompleteness and Computability: An Open Introduction to Gödel's Theorems.Richard Zach - 2019 - Open Logic Project.
    Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of a subspace (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15. A new reading and comparative interpretation of Gödel’s completeness (1930) and incompleteness (1931) theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of infinity. The most (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  92
    The nature and significance of gödel's incompleteness theorems.Solomon Feferman - manuscript
    What Gödel accomplished in the decade of the 1930s before joining the Institute changed the face of mathematical logic and continues to influence its development. As you gather from my title, I’ll be talking about the most famous of his results in that period, but first I want to indulge in some personal reminiscences. In many ways this is a sentimental journey for me. I was a member of the Institute in 1959-60, a couple of years after receiving my PhD (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  17.  92
    Gödel's incompleteness theorems and computer science.Roman Murawski - 1997 - Foundations of Science 2 (1):123-135.
    In the paper some applications of Gödel's incompleteness theorems to discussions of problems of computer science are presented. In particular the problem of relations between the mind and machine (arguments by J.J.C. Smart and J.R. Lucas) is discussed. Next Gödel's opinion on this issue is studied. Finally some interpretations of Gödel's incompleteness theorems from the point of view of the information theory are presented.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  18.  93
    Epistemic theories and the interpretation of gödel's incompleteness theorems.William N. Reinhardt - 1986 - Journal of Philosophical Logic 15 (4):427--74.
  19. What does Gödel's second theorem say?Michael Detlefsen - 2001 - Philosophia Mathematica 9 (1):37-71.
    We consider a seemingly popular justification (we call it the Re-flexivity Defense) for the third derivability condition of the Hilbert-Bernays-Löb generalization of Godel's Second Incompleteness Theorem (G2). We argue that (i) in certain settings (rouglily, those where the representing theory of an arithmetization is allowed to be a proper subtheory of the represented theory), use of the Reflexivity Defense to justify the tliird condition induces a fourth condition, and that (ii) the justification of this fourth condition faces serious (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  20. The Gödel Incompleteness Theorems (1931) by the Axiom of Choice.Vasil Penchev - 2020 - Econometrics: Mathematical Methods and Programming eJournal (Elsevier: SSRN) 13 (39):1-4.
    Those incompleteness theorems mean the relation of (Peano) arithmetic and (ZFC) set theory, or philosophically, the relation of arithmetical finiteness and actual infinity. The same is managed in the framework of set theory by the axiom of choice (respectively, by the equivalent well-ordering "theorem'). One may discuss that incompleteness form the viewpoint of set theory by the axiom of choice rather than the usual viewpoint meant in the proof of theorems. The logical corollaries from that "nonstandard" viewpoint the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  21.  37
    On the Invariance of Gödel’s Second Theorem with Regard to Numberings.Balthasar Grabmayr - 2021 - Review of Symbolic Logic 14 (1):51-84.
    The prevalent interpretation of Gödel’s Second Theorem states that a sufficiently adequate and consistent theory does not prove its consistency. It is however not entirely clear how to justify this informal reading, as the formulation of the underlying mathematical theorem depends on several arbitrary formalisation choices. In this paper I examine the theorem’s dependency regarding Gödel numberings. I introducedeviantnumberings, yielding provability predicates satisfying Löb’s conditions, which result in provable consistency sentences. According to the main result of this paper however, these (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  22.  41
    Heterologicality and Incompleteness.Cezary Cieśliński - 2002 - Mathematical Logic Quarterly 48 (1):105-110.
    We present a semantic proof of Gödel's second incompleteness theorem, employing Grelling's antinomy of heterological expressions. For a theory T containing ZF, we define the sentence HETT which says intuitively that the predicate “heterological” is itself heterological. We show that this sentence doesn't follow from T and is equivalent to the consistency of T. Finally we show how to construct a similar incompleteness proof for Peano Arithmetic.
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  23. The gödel paradox and Wittgenstein's reasons.Francesco Berto - 2009 - Philosophia Mathematica 17 (2):208-219.
    An interpretation of Wittgenstein’s much criticized remarks on Gödel’s First Incompleteness Theorem is provided in the light of paraconsistent arithmetic: in taking Gödel’s proof as a paradoxical derivation, Wittgenstein was drawing the consequences of his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. It is shown that the features of paraconsistent arithmetics (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  24. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  25.  60
    What he could have said (but did not say) about Gödel’s second theorem: A note on Floyd-Putnam’s Wittgenstein.Kaave Lajevardi - 2021 - Wittgenstein-Studien 12 (1):121-129.
    In several publications, Juliet Floyd and Hilary Putnam have argued that the so-called ‘notorious paragraph’ of the Remarks on the Foundations of Mathematics contains a valuable philosophical insight about Gödel’s informal proof of the first incompleteness theorem – in a nutshell, the idea they attribute to Wittgenstein is that if the Gödel sentence of a system is refutable, then, because of the resulting ω-inconsistency of the system, we should give up the translation of Gödel’s sentence by the English sentence (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  26. On an alleged refutation of Hilbert's program using gödel's first incompleteness theorem.Michael Detlefsen - 1990 - Journal of Philosophical Logic 19 (4):343 - 377.
    It is argued that an instrumentalist notion of proof such as that represented in Hilbert's viewpoint is not obligated to satisfy the conservation condition that is generally regarded as a constraint on Hilbert's Program. A more reasonable soundness condition is then considered and shown not to be counter-exemplified by Godel's First Theorem. Finally, attention is given to the question of what a theory is; whether it should be seen as a "list" or corpus of beliefs, or as a method (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  27.  9
    Gödel’s Incompleteness Theorems and Artificial Life.John P. Sullins - 1997 - Society for Philosophy and Technology Quarterly Electronic Journal 2 (3):185-195.
    In this paper I discuss whether Gödel's incompleteness theorems have any implications for studies in Artificial Life (AL). Since Gödel's incompleteness theorems have been used to argue against certain mechanistic theories of the mind, it seems natural to attempt to apply the theorems to certain strong mechanistic arguments postulated by some AL theorists. -/- We find that an argument using the incompleteness theorems can not be constructed that will block the hard AL claim, specifically in the field (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Computational complexity and Godel's incompleteness theorem.Gregory J. Chaitin - 1970 - [Rio de Janeiro,: Centro Técnico Científico, Pontifícia Universidade Católica do Rio de Janeiro. Edited by Gregory J. Chaitin.
  29.  47
    Rosser-Type Undecidable Sentences Based on Yablo’s Paradox.Taishi Kurahashi - 2014 - Journal of Philosophical Logic 43 (5):999-1017.
    It is widely considered that Gödel’s and Rosser’s proofs of the incompleteness theorems are related to the Liar Paradox. Yablo’s paradox, a Liar-like paradox without self-reference, can also be used to prove Gödel’s first and second incompleteness theorems. We show that the situation with the formalization of Yablo’s paradox using Rosser’s provability predicate is different from that of Rosser’s proof. Namely, by using the technique of Guaspari and Solovay, we prove that the undecidability of each instance of Rosser-type (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  30. Computational complexity and Godel's incompleteness theorem. McGraw-Hill - unknown
    Given any simply consistent formal theory F of the state complexity L(S) of finite binary sequences S as computed by 3-tape-symbol Turing machines, there exists a natural number L(F ) such that L(S) > n is provable in F only if n L(F ). The proof resembles Berry’s..
     
    Export citation  
     
    Bookmark   1 citation  
  31.  57
    Putnam, Peano, and the Malin Génie: could we possibly bewrong about elementary number-theory?Christopher Norris - 2002 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 33 (2):289-321.
    This article examines Hilary Putnam's work in the philosophy of mathematics and - more specifically - his arguments against mathematical realism or objectivism. These include a wide range of considerations, from Gödel's incompleteness-theorem and the limits of axiomatic set-theory as formalised in the Löwenheim-Skolem proof to Wittgenstein's sceptical thoughts about rule-following, Michael Dummett's anti-realist philosophy of mathematics, and certain problems – as Putnam sees them – with the conceptual foundations of Peano arithmetic. He also adopts a thought-experimental approach – (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  32. On the Arithmetical Truth of Self‐Referential Sentences.Kaave Lajevardi & Saeed Salehi - 2019 - Theoria 85 (1):8-17.
    We take an argument of Gödel's from his ground‐breaking 1931 paper, generalize it, and examine its validity. The argument in question is this: "the sentence G says about itself that it is not provable, and G is indeed not provable; therefore, G is true".
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  33.  22
    Hilbert's Programme and Gödel's Theorems.Matthias Schirn Karl‐Georg Niebergall - 2002 - Dialectica 56 (4):347-370.
    In this paper, we attempt to show that a weak version of Hilbert's metamathematics is compatible with Gödel's Incompleteness Theorems by employing only what are clearly natural prov‐ ability predicates. Defining first “T proves the consistency of a theory S indirectly in one step”, we subsequently prove “PA proves its own consistency indirectly in one step” and sketch the proof for “If S is a recursively enumerable extension of , S proves its own consistency indirectly in one step”. The (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  34. On Gödel Sentences and What They Say.Peter Milne - 2007 - Philosophia Mathematica 15 (2):193-226.
    Proofs of Gödel's First Incompleteness Theorem are often accompanied by claims such as that the gödel sentence constructed in the course of the proof says of itself that it is unprovable and that it is true. The validity of such claims depends closely on how the sentence is constructed. Only by tightly constraining the means of construction can one obtain gödel sentences of which it is correct, without further ado, to say that they say of themselves that they are (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  35.  16
    Incompleteness Theorems and S i 2 versus S i+1 2Godel Sentences of Bounded Arithmetic.Arnold Beckmann & Gaisi Takeuti - 2002 - Bulletin of Symbolic Logic 8 (3):433.
  36.  20
    Never trust an unsound theory.Christian Bennet & Rasmus Blanck - 2022 - Theoria 88 (5):1053-1056.
    Lajevardi and Salehi, in “There may be many arithmetical Gödel sentences”, argue against the use of the definite article in the expression “the Gödel sentence”, by claiming that any unsound theory has Gödelian sentences with different truth values. We show that their Theorems 1 and 2 are special cases (modulo Löb's theorem and the first incompleteness theorem) of general observations pertaining to fixed points of any formula, and argue that the false sentences of Lajevardi and Salehi are in fact (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37.  44
    Handbook of mathematical logic, edited by Barwise Jon with the cooperation of Keisler H. J., Kunen K., Moschovakis Y. N., and Troelstra A. S., Studies in logic and the foundations of mathematics, vol. 90, North-Holland Publishing Company, Amsterdam, New York, and Oxford, 1978 , xi + 1165 pp.Smoryński C.. D.1. The incompleteness theorems. Pp. 821–865.Schwichtenberg Helmut. D.2. Proof theory: some applications of cut-elimination. Pp. 867–895.Statman Richard. D.3. Herbrand's theorem and Gentzen's notion of a direct proof. Pp. 897–912.Feferman Solomon. D.4. Theories of finite type related to mathematical practice. Pp. 913–971.Troelstra A. S.. D.5. Aspects of constructive mathematics. Pp. 973–1052.Fourman Michael P.. D.6. The logic of topoi. Pp. 1053–1090.Barendregt Henk P.. D.1. The type free lambda calculus. Pp. 1091–1132.Paris Jeff and Harrington Leo. D.8. A mathematical incompleteness in Peano arithmetic. Pp. 1133–1142. [REVIEW]W. A. Howard - 1984 - Journal of Symbolic Logic 49 (3):980-988.
  38.  29
    John von Neumann’s Discovery of the 2nd Incompleteness Theorem.Giambattista Formica - 2022 - History and Philosophy of Logic 44 (1):66-90.
    Shortly after Kurt Gödel had announced an early version of the 1st incompleteness theorem, John von Neumann wrote a letter to inform him of a remarkable discovery, i.e. that the consistency of a formal system containing arithmetic is unprovable, now known as the 2nd incompleteness theorem. Although today von Neumann’s proof of the theorem is considered lost, recent literature has explored many of the issues surrounding his discovery. Yet, one question still awaits a satisfactory answer: how did von (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  39.  24
    Phase transitions for Gödel incompleteness.Andreas Weiermann - 2009 - Annals of Pure and Applied Logic 157 (2-3):281-296.
    Gödel’s first incompleteness result from 1931 states that there are true assertions about the natural numbers which do not follow from the Peano axioms. Since 1931 many researchers have been looking for natural examples of such assertions and breakthroughs were obtained in the seventies by Jeff Paris [Some independence results for Peano arithmetic. J. Symbolic Logic 43 725–731] , Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977] and Laurie Kirby [L. Kirby, Jeff Paris, Accessible independence results for Peano Arithmetic, Bull. (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  40.  42
    How to extend the semantic tableaux and cut-free versions of the second incompleteness theorem almost to Robinson's arithmetic Q.Dan E. Willard - 2002 - Journal of Symbolic Logic 67 (1):465-496.
    Let us recall that Raphael Robinson's Arithmetic Q is an axiom system that differs from Peano Arithmetic essentially by containing no Induction axioms [13], [18]. We will generalize the semantic-tableaux version of the Second Incompleteness Theorem almost to the level of System Q. We will prove that there exists a single rather long Π 1 sentence, valid in the standard model of the Natural Numbers and denoted as V, such that if α is any finite consistent extension of Q (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  41. R. M. SMULLYAN "Gödel's incompleteness theorems and Recursion theory for metamathematics". [REVIEW]A. D. Irvine - 1994 - History and Philosophy of Logic 15 (1):133.
  42. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  43.  20
    Never trust an unsound theory.Christian Bennet & Rasmus Blanck - 2022 - Theoria 88 (5):1053-1056.
    Lajevardi and Salehi, in “There may be many arithmetical Gödel sentences”, argue against the use of the definite article in the expression “the Gödel sentence”, by claiming that any unsound theory has Gödelian sentences with different truth values. We show that their Theorems 1 and 2 are special cases (modulo Löb's theorem and the first incompleteness theorem) of general observations pertaining to fixed points of any formula, and argue that the false sentences of Lajevardi and Salehi are in fact (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  44.  10
    Never trust an unsound theory.Christian Bennet & Rasmus Blanck - 2022 - Theoria 88 (5):1053-1056.
    Lajevardi and Salehi, in “There may be many arithmetical Gödel sentences”, argue against the use of the definite article in the expression “the Gödel sentence”, by claiming that any unsound theory has Gödelian sentences with different truth values. We show that their Theorems 1 and 2 are special cases (modulo Löb's theorem and the first incompleteness theorem) of general observations pertaining to fixed points of any formula, and argue that the false sentences of Lajevardi and Salehi are in fact (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  45.  21
    Kurt Godel Collected Works: Volume V: Correspondence, H-Z.Kurt Gödel - 2003 - Oxford, England: Oxford University Press UK.
    Kurt Gödel was the most outstanding logician of the twentieth century, famous for his hallmark works on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum hypothesis. He is also noted for his work on constructivity, the decision problem, and the foundations of computability theory, as well as for the strong individuality of his writings on the philosophy of mathematics. He is less well known for his discovery of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  76
    An Introduction to Gödel's Theorems.Peter Smith - 2007 - New York: Cambridge University Press.
    In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical truths the theory cannot prove. This remarkable result is among the most intriguing in logic. Gödel also outlined an equally significant Second Incompleteness Theorem. How are these Theorems established, and why do they matter? Peter Smith answers these questions by presenting an unusual variety of proofs for the First Theorem, showing how to (...)
    Direct download  
     
    Export citation  
     
    Bookmark   49 citations  
  47.  59
    Recursion theory for metamathematics.Raymond Merrill Smullyan - 1993 - New York: Oxford University Press.
    This work is a sequel to the author's Godel's Incompleteness Theorems, though it can be read independently by anyone familiar with Godel's incompleteness theorem for Peano arithmetic. The book deals mainly with those aspects of recursion theory that have applications to the metamathematics of incompleteness, undecidability, and related topics. It is both an introduction to the theory and a presentation of new results in the field.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Gödel's incompleteness theorems.Raymond M. Smullyan - 1992 - New York: Oxford University Press. Edited by Lou Goble.
    Kurt Godel, the greatest logician of our time, startled the world of mathematics in 1931 with his Theorem of Undecidability, which showed that some statements in mathematics are inherently "undecidable." His work on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum theory brought him further worldwide fame. In this introductory volume, Raymond Smullyan, himself a well-known logician, guides the reader through the fascinating world of Godel's (...)
    Direct download  
     
    Export citation  
     
    Bookmark   14 citations  
  49.  20
    A machine-assisted proof of gödel’s incompleteness theorems for the theory of hereditarily finite sets.Lawrence C. Paulson - 2014 - Review of Symbolic Logic 7 (3):484-498.
  50. Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established (...)
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
1 — 50 / 1000