Results for 'macroscopic quantum superposition'

975 found
Order:
  1. Macroscopic Quantum Superpositions Cannot Be Measured, Even in Principle.Andrew Knight - manuscript
    I show in this paper why the universality of quantum mechanics at all scales, which implies the possibility of Schrodinger's Cat and Wigner's Friend thought experiments, cannot be experimentally confirmed, and why macroscopic superpositions in general cannot be observed or measured, even in principle. Through the relativity of quantum superposition and the transitivity of correlation, it is shown that from the perspective of an object that is in quantum superposition relative to a macroscopic (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  2. Killing Schrodinger's Cat: Why Macroscopic Quantum Superpositions Are Impossible In Principle.Andrew Knight - manuscript
    The Schrodinger's Cat and Wigner's Friend thought experiments, which logically follow from the universality of quantum mechanics at all scales, have been repeatedly characterized as possible in principle, if perhaps difficult or impossible for all practical purposes. I show in this paper why these experiments, and interesting macroscopic superpositions in general, are actually impossible in principle. First, no macroscopic superposition can be created via the slow process of natural quantum packet dispersion because all macroscopic (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  3.  27
    Generation of Highly Resilient to Decoherence Macroscopic Quantum Superpositions via Phase-covariant Quantum Cloning.Francesco De Martini, Fabio Sciarrino, Nicolò Spagnolo & Chiara Vitelli - 2011 - Foundations of Physics 41 (3):492-508.
    In this paper we analyze the resilience to decoherence of the Macroscopic Quantum Superpositions (MQS) generated by optimal phase-covariant quantum cloning according to two coherence criteria, both based on the concept of Bures distance in Hilbert spaces. We show that all MQS generated by this system are characterized by a high resilience to decoherence processes. This analysis is supported by the results of recent MQS experiments of N=3.5×104 particles.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  4.  34
    Back-action in the measurement of “macroscopic quantum superpositions” in microwave cavities.T. Zaugg, M. Wilkens & P. Meystre - 1993 - Foundations of Physics 23 (6):857-871.
    We analyze the back-action of nonlinear atomic homodyning measurements on steady-state “macroscopic superpositions” that can be generated in high-Q microwave cavities. We show that a full characterization of the state requires measurements such that the macroscopic superposition is irreversibly destroyed, that is, it cannot be reconstructed by using the scheme that was used to generate it in the first place.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5. Entanglement and Quantum Superposition of a Macroscopic-Macroscopic system.Francesco De Martini - 2011 - Foundations of Physics 41 (3):363-370.
    Two quantum Macro-states and their Macroscopic Quantum Superpositions (MQS) localized in two far apart, space-like separated sites can be non-locally correlated by any entangled couple of single-particles having interacted in the past. This novel “Macro-Macro” paradigm is investigated on the basis of a recent study on an entangled Micro-Macro system involving N≈105 particles. Crucial experimental issues as the violation of Bell’s inequalities by the Macro-Macro system are considered.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  6. Evidence of Macroscopic Quantum Phenomena and Conscious Reality Selection.Cynthia Sue Larson - 2014 - Cosmos and History 10 (1):34-47.
    The purpose of this paper is to present an overview of emergent examples of macroscopic quantum phenomena. While quantum theory asserts that such quantum behaviors as superposition, entanglement, and coherence are possible for all objects, assumptions that quantum processes operate exclusively within the quantum realm have contributed to on-going bias toward presumed primacy of classical physics in the macroscopic realm. Non-trivial quantum macroscopic effects are now recognized in the fields of (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  7. Microscopic and Macroscopic Quantum Realms.Moorad Alexanian - 2014 - Perspectives on Science and Christian Faith 66 (2):127-128.
    Quantum entanglement lies at the foundation of quantum mechanics. Witness Schrödinger highlighting entanglement with his puzzling cat thought experiment and Einstein deriding it as “spooky action at a distance.” Nonetheless, quantum entanglement has been verified experimentally and is essential for quantum information and quantum computing. The quantum superposition principle, together with entanglement, dramatically contrasts the quantum from the classical description of reality. We attempt to integrate physical reality with a Christian worldview.
    Direct download  
     
    Export citation  
     
    Bookmark  
  8.  7
    A No-Go Result on Observing Quantum Superpositions.Guang Ping He - 2024 - Foundations of Physics 54 (2):1-11.
    We give a general proof showing that if the evolution from one state to another is not reversible, then the projective measurements on the superposition of these two states are impossible. Applying this no-go result to the Schrödinger’s cat paradox implies that if something is claimed to be a real Schrödinger’s cat, there will be no measurable difference between it and a trivial classical mixture of ordinary cats in any physically implementable process, unless raising the dead becomes reality. Other (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  12
    Macroscopic Superposition States in Isolated Quantum Systems.Roman V. Buniy & Stephen D. H. Hsu - 2021 - Foundations of Physics 51 (4):1-8.
    For any choice of initial state and weak assumptions about the Hamiltonian, large isolated quantum systems undergoing Schrödinger evolution spend most of their time in macroscopic superposition states. The result follows from von Neumann’s 1929 Quantum Ergodic Theorem. As a specific example, we consider a box containing a solid ball and some gas molecules. Regardless of the initial state, the system will evolve into a quantum superposition of states with the ball in macroscopically different (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10.  14
    Quantum Causality Relations and the Emergence of Reality from Coherent Superpositions.Holger F. Hofmann - 2020 - Foundations of Physics 50 (12):1809-1823.
    The Hilbert space formalism describes causality as a statistical relation between initial experimental conditions and final measurement outcomes, expressed by the inner products of state vectors representing these conditions. This representation of causality is in fundamental conflict with the classical notion that causality should be expressed in terms of the continuity of intermediate realities. Quantum mechanics essentially replaces this continuity of reality with phase sensitive superpositions, all of which need to interfere in order to produce the correct conditional probabilities (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11.  34
    On the quantum mechanical superposition of macroscopically distinguishable states.D. Gutkowski & M. V. Valdes Franco - 1983 - Foundations of Physics 13 (10):963-986.
    We consider the superposition of macroscopically distinguishable states for a measuring process whose time evolution is described by the Schrödinger equation. We ask whether it is possible to observe interference effects due to the above mentioned superposition and how to observe them, taking into consideration an experiment performed by other authors. We find a necessary condition in order to be able to observe these effects. We also point out some very serious difficulties in observing them and analyse the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12. How quantum mechanics with deterministic collapse localizes macroscopic objects.Arthur Jabs - manuscript
    Why microscopic objects exhibit wave properties (are delocalized), but macroscopic do not (are localized)? Traditional quantum mechanics attributes wave properties to all objects. When complemented with a deterministic collapse model (Quantum Stud.: Math. Found. 3, 279 (2016)) quantum mechanics can dissolve the discrepancy. Collapse in this model means contraction and occurs when the object gets in touch with other objects and satisfies a certain criterion. One single collapse usually does not suffice for localization. But the object (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  13.  43
    Comments on “On the quantum mechanical superposition of macroscopically distinguishable states”.D. Bedford & D. Wang - 1983 - Foundations of Physics 13 (10):987-988.
    The substance of the authors' disagreement with the views of D. Gutkowski and M. V. Valdes Franco is presented.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14. Macroscopic Superpositions, Decoherent Histories, and the Emergence of Hydrodynamical Behaviour.Jonathan Halliwell - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.
     
    Export citation  
     
    Bookmark   11 citations  
  15. Macroscopic Superpositions, Decoherent Histories, and the Emergence of Hydrodynamical Behaviour.Jonathan Halliwell - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford University Press.
    No categories
     
    Export citation  
     
    Bookmark   8 citations  
  16. The superposition principle in macroscopic systems.Anthony J. Leggett - 1986 - In Roger Penrose & C. J. Isham (eds.), Quantum Concepts in Space and Time. New York ;Oxford University Press. pp. 228--240.
     
    Export citation  
     
    Bookmark   2 citations  
  17. Quantum mechanics as a consistency condition on initial and final boundary conditions.David John Miller - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):767-781.
    If the block universe view is correct, the future and the past have similar status and one would expect physical theories to involve final as well as initial boundary conditions. A plausible consistency condition between the initial and final boundary conditions in non-relativistic quantum mechanics leads to the idea that the properties of macroscopic quantum systems, relevantly measuring instruments, are uniquely determined by the boundary conditions. An important element in reaching that conclusion is that preparations and measurements (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  18.  66
    Epistemic Primacy vs. Ontological Elusiveness of Spatial Extension: Is There an Evolutionary Role for the Quantum?Massimo Pauri - 2011 - Foundations of Physics 41 (11):1677-1702.
    A critical re-examination of the history of the concepts of space (including spacetime of general relativity and relativistic quantum field theory) reveals a basic ontological elusiveness of spatial extension, while, at the same time, highlighting the fact that its epistemic primacy seems to be unavoidably imposed on us (as stated by A.Einstein “giving up the extensional continuum … is like to breathe in airless space”). On the other hand, Planck’s discovery of the atomization of action leads to the fundamental (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Orchestrated objective reduction of quantum coherence in brain microtubules: The "orch OR" model for consciousness.Roger Penrose & Stuart Hameroff - 1996 - Mathematics and Computers in Simulation 40:453-480.
    Features of consciousness difficult to understand in terms of conventional neuroscience have evoked application of quantum theory, which describes the fundamental behavior of matter and energy. In this paper we propose that aspects of quantum theory (e.g. quantum coherence) and of a newly proposed physical phenomenon of quantum wave function "self-collapse"(objective reduction: OR -Penrose, 1994) are essential for consciousness, and occur in cytoskeletal microtubules and other structures within each of the brain's neurons. The particular characteristics of (...)
     
    Export citation  
     
    Bookmark   8 citations  
  20.  22
    The measurement problem in quantum mechanics.Alessio Giuseppe Ferraioli & Canio Noce - 2019 - Science and Philosophy 7 (1):41-58.
    In this paper, we discuss the importance of measurement in quantum mechanics and the so-called measurement problem. Any quantum system can be described as a linear combination of eigenstates of an operator representing a physical quantity; this means that the system can be in a superposition of states that corresponds to different eigenvalues, i.e., different physical outcomes, each one incompatible with the others. The measurement process converts a state of superposition in a well-defined state. We show (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21. On the Metaphysics of Quantum Mechanics.Valia Allori - 2013 - In Soazig Lebihan (ed.), La philosophie de la physique: d'aujourd'hui a demain. Editions Vuibert.
    What is quantum mechanics about? The most natural way to interpret quantum mechanics realistically as a theory about the world might seem to be what is called wave function ontology: the view according to which the wave function mathematically represents in a complete way fundamentally all there is in the world. Erwin Schroedinger was one of the first proponents of such a view, but he dismissed it after he realized it led to macroscopic superpositions (if the wave (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  22. Quantum particles as conceptual entities: A possible explanatory framework for quantum theory. [REVIEW]Diederik Aerts - 2009 - Foundations of Science 14 (4):361-411.
    We put forward a possible new interpretation and explanatory framework for quantum theory. The basic hypothesis underlying this new framework is that quantum particles are conceptual entities. More concretely, we propose that quantum particles interact with ordinary matter, nuclei, atoms, molecules, macroscopic material entities, measuring apparatuses, in a similar way to how human concepts interact with memory structures, human minds or artificial memories. We analyze the most characteristic aspects of quantum theory, i.e. entanglement and non-locality, (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  23.  43
    Quantum mechanics of relativistic spinless particles.John R. Fanchi & R. Eugene Collins - 1978 - Foundations of Physics 8 (11-12):851-877.
    A relativistic one-particle, quantum theory for spin-zero particles is constructed uponL 2(x, ct), resulting in a positive definite spacetime probability density. A generalized Schrödinger equation having a Hermitian HamiltonianH onL 2(x, ct) for an arbitrary four-vector potential is derived. In this formalism the rest mass is an observable and a scalar particle is described by a wave packet that is a superposition of mass states. The requirements of macroscopic causality are shown to be satisfied by the most (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  24. Anesthesia, consciousness and hydrophobic pockets a unitary quantum hypothesis of anesthetic action.Stuart Hameroff - manuscript
    Anesthetic gas molecules are recognized to act by van der Waals (London dispersion) forces in hydrophobic pockets of select brain proteins to ablate consciousness. Enigmatic features of consciousness have defied conventional neurophysiological exp lanations and prompted suggestions for supplemental occurrence of macroscopic quantum coherent states and quantum computation in the brain. Are these feasible? During conscious (non-anesthetic) conditions, endogenous Van der Waals London dispersion forces occur among non-polar amino acid groups in hydrophobic pockets of neural proteins and (...)
     
    Export citation  
     
    Bookmark   2 citations  
  25. Making quantum theory compatible with realism.GianCarlo Ghirardi - 2002 - Foundations of Science 7 (1-2):11-47.
    After a brief account of theway quantum theory deals with naturalprocesses, the crucial problem that such atheory meets, the measurement or, better, themacro-objectification problem is discussed.The embarrassing aspects of the occurrence ofentangled states involving macroscopic systemsare analyzed in details. The famous example ofSchroedinger's cat is presented and it ispointed out how the combined interplay of thesuperposition principle and the ensuingentanglement raises some serious difficultiesin working out a satisfactory quantum worldview, agreeing with our definiteperceptions. The orthodox solution to (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26.  36
    Testing quantum state reduction via cosmogenic neutrinos.Joy Christian - unknown
    It is pointed out that the Diosi-Penrose ansatz for gravity-induced quantum state reduction can be tested by observing oscillations in the flavor ratios of neutrinos originated at cosmological distances. Since such a test would be almost free of environmental decoherence, testing the ansatz by means of a next generation neutrino detector such as IceCube would be much cleaner than by experiments proposed so far involving superpositions of macroscopic systems. The proposed microscopic test would also examine the universality of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27.  58
    Random witnesses and the classical character of macroscopic objects.Itamar Pitowsky - unknown
    Why don't we see large macroscopic objects in entangled states? Even if the particles composing the object were all entangled and insulated from the environment, we shall still find it almost always impossible to observe the superposition. The reason is that as the number of particles n grows, we need an ever more careful preparation, and an ever more carefully designed experiment, in order to recognize the entangled character of the state of the object. An observable W that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  28.  21
    Watching the Clocks: Interpreting the Page–Wootters Formalism and the Internal Quantum Reference Frame Programme.Emily Adlam - 2022 - Foundations of Physics 52 (5):1-49.
    We discuss some difficulties that arise in attempting to interpret the Page–Wootters and Internal Quantum Reference Frames formalisms, then use a ‘final measurement’ approach to demonstrate that there is a workable single-world realist interpretation for these formalisms. We note that it is necessary to adopt some interpretation before we can determine if the ‘reference frames’ invoked in these approaches are operationally meaningful, and we argue that without a clear operational interpretation, such reference frames might not be suitable to define (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29.  41
    Experimental approaches to the quantum measurement paradox.A. J. Leggett - 1988 - Foundations of Physics 18 (9):939-952.
    I examine the question of how far experiments that look for the effects of superposition of macroscopically distinct states are relevant to the classic measurement paradox of quantum mechanics. Existing experiments on superconducting devices confirm the predictions of the quantum formalism extrapolated to the macroscopic level, and to that extent provide strong circumstantial evidence for its validity at this level, but do not directly test the principle of superposition of macrostates. A more ambitious experiment, not (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  30. From Yijing to Copenhagen Interpretation of Quantum Physics.David Leong - manuscript
    In the quest and search for a physical theory of everything from the macroscopic large body matter to the microscopic elementary particles, with strange and weird concepts springing from quantum physics discovery, irreconcilable positions and inconvenient facts complicated physics – from Newtonian physics to quantum science, the question is- how do we close the gap? Indeed, there is a scientific and mathematical fireworks when the issue of quantum uncertainties and entanglements cannot be explained with classical physics. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  31.  62
    Quantum dynamical reduction and reality: Replacing probability densities with densities in real space. [REVIEW]Giancarlo Ghirardi - 1996 - Erkenntnis 45 (2-3):349 - 365.
    Consideration is given to recent attempts to solve the objectification problem of quantum mechanics by considering nonlinear and stochastic modifications of Schrödinger's evolution equation. Such theories agree with all predictions of standard quantum mechanics concerning microsystems but forbid the occurrence of superpositions of macroscopically different states. It is shown that the appropriate interpretation for such theories is obtained by replacing the probability densities of standard quantum mechanics with mass densities in real space. Criteria allowing a precise characterization (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  32.  87
    Toward a More Natural Expression of Quantum Logic with Boolean Fractions.Philip G. Calabrese - 2005 - Journal of Philosophical Logic 34 (4):363-401.
    This paper uses a non-distributive system of Boolean fractions (a|b), where a and b are 2-valued propositions or events, to express uncertain conditional propositions and conditional events. These Boolean fractions, 'a if b' or 'a given b', ordered pairs of events, which did not exist for the founders of quantum logic, can better represent uncertain conditional information just as integer fractions can better represent partial distances on a number line. Since the indeterminacy of some pairs of quantum events (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  33. Schrödinger's cat in a realist quantum mechanics.Arthur Jabs - 2016 - arXiv.Org.
    There is no paradox with Schrödinger’s cat in a realist interpretation. In particular, a closer look at the temporal aspect shows that the two macroscopic wave functions (alive and dead) of Schrödinger’s cat are not to be compared with two superposed parts of a microscopic quantum wave function.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34. Book Review: The World in the Wave Function - The Metaphysics of Quantum Physics by A. Ney. [REVIEW]Daihyun Chung - 2023 - CHEOLHAK, Korean Philosophical Association 156:211-224.
    (English translation from the text in Korean) -/- The assertion that both humanity and the external world share a fundamental unity has gained increasing recognition, particularly in light of the growing discourse surrounding quantum physics. This perspective draws parallels with conceptual frameworks found in Western idealism, Eastern Buddhism, and the philosophy of Zhuangzi. In examining the current state of scientific inquiry, one cannot overlook the profound impact of quantum mechanics on the field of physics, alongside the rising influence (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  35.  46
    Objective probability and the mind-body relation.Paul Tappenden - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 57:8-16.
    Objective probability in quantum mechanics is often thought to involve a stochastic process whereby an actual future is selected from a range of possibilities. Everett’s seminal idea is that all possible definite futures on the pointer basis exist as components of a macroscopic linear superposition. I demonstrate that these two conceptions of what is involved in quantum processes are linked via two alternative interpretations of the mind-body relation. This leads to a fission, rather than divergence, interpretation (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  36. The Paraconsistent Logic of Quantum Superpositions.Newton C. A. da Costa & Christian de Ronde - 2013 - Foundations of Physics 43 (7):845-858.
    Physical superpositions exist both in classical and in quantum physics. However, what is exactly meant by ‘superposition’ in each case is extremely different. In this paper we discuss some of the multiple interpretations which exist in the literature regarding superpositions in quantum mechanics. We argue that all these interpretations have something in common: they all attempt to avoid ‘contradiction’. We argue in this paper, in favor of the importance of developing a new interpretation of superpositions which takes (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  37. Personal Publications Media Views Ulimate Computing.Stuart Hameroff & Roger Penrose - unknown
    Features of consciousness difficult to understand in terms of conventional neuroscience have evoked application of quantum theory, which describes the fundamental behavior of matter and energy. In this paper we propose that aspects of quantum theory (e.g. quantum coherence) and of a newly proposed physical phenomenon of quantum wave function "self-collapse"(objective reduction: OR -Penrose, 1994) are essential for consciousness, and occur in cytoskeletal microtubules and other structures within each of the brain's neurons. The particular characteristics of (...)
     
    Export citation  
     
    Bookmark  
  38.  88
    Quantum Superpositions and the Representation of Physical Reality Beyond Measurement Outcomes and Mathematical Structures.Christian de Ronde - 2016 - Foundations of Science 23 (4):621-648.
    In this paper we intend to discuss the importance of providing a physical representation of quantum superpositions which goes beyond the mere reference to mathematical structures and measurement outcomes. This proposal goes in the opposite direction to the project present in orthodox contemporary philosophy of physics which attempts to “bridge the gap” between the quantum formalism and common sense “classical reality”—precluding, right from the start, the possibility of interpreting quantum superpositions through non-classical notions. We will argue that (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  39.  9
    QBism: An Analytical Review.Alexander A. Pechenkin - 2020 - Epistemology and Philosophy of Science 57 (4):199-216.
    A new interpretation of quantum mechanics, the interpretation which became popular in XXI, has been taken under consideration. This is the quantum baysinism (QBism) which may be taken as an extrapolation of the baysian philosophy of probability over the interpretation of quantum mechanics. The baysian philosophy of quantum mechanics has been compared with the Copenhagen interpretation of quantum mechanics, the interpretation which can been treated as standard as it is represented in the main textbooks. In (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  40.  35
    Representing Quantum Superpositions: Powers, Potentia and Potential Effectuations.Christian de Ronde - unknown
    In this paper we attempt to provide a physical representation of quantum superpositions. For this purpose we discuss the constraints of the quantum formalism to the notion of possibility and the necessity to consider a potential realm independent of actuality. Taking these insights into account and from the basic principles of quantum mechanics itself we advance towards the definition of the notions of power and potentia. Assuming these notions as a standpoint we analyze the meaning of ‘observation’ (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  41.  35
    Quantum Superpositions Do Exist! But ‘Quantum Physical Reality ≠ Actuality’.Christian de Ronde - unknown
    In this paper we analyze the definition of quantum superpositions within orthodox Quantum Mechanics and their relation to physical reality. We will begin by discussing how the metaphysical presuppositions imposed by Bohr on the interpretation of QM have become not only interpretational dogmas which constrain the limits of the present Orthodox Line of Research, but also how these desiderata implicitly preclude the possibility of developing a physical representation of quantum superpositions. We will then continue analyzing how most (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  42.  6
    Macroscopic quantum objects.T. D. Clark - 1987 - In Basil J. Hiley & D. Peat (eds.), Quantum Implications: Essays in Honour of David Bohm. Methuen.
    Direct download  
     
    Export citation  
     
    Bookmark  
  43.  40
    Quantum Superpositions of the Speed of Light.Sabine Hossenfelder - 2012 - Foundations of Physics 42 (11):1452-1468.
    While it has often been proposed that, fundamentally, Lorentz-invariance is not respected in a quantum theory of gravity, it has been difficult to reconcile deviations from Lorentz-invariance with quantum field theory. The most commonly used mechanisms either break Lorentz-invariance explicitly or deform it at high energies. However, the former option is very tightly constrained by experiment already, the latter generically leads to problems with locality. We show here that there exists a third way to integrate deviations from Lorentz-invariance (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  44.  27
    Quantum Superpositions and Causality: On the Multiple Paths to the Measurement Result.Christian de Ronde - unknown
    The following analysis attempts to provide a general account of the multiple solutions given to the quantum measurement problem in terms of causality. Leaving aside instrumentalism which restricts its understanding of quantum mechanics to the algorithmic prediction of measurement outcomes, the many approaches which try to give an answer can be distinguished by their explanation based on the efficient cause —recovering in this way a classical physical description— or based on the final cause —which goes back to the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  45.  6
    Measuring Quantum Superpositions.Christian de Ronde - 2023 - In Jonas R. B. Arenhart & Raoni W. Arroyo (eds.), Non-Reflexive Logics, Non-Individuals, and the Philosophy of Quantum Mechanics: Essays in Honour of the Philosophy of Décio Krause. Springer Verlag. pp. 261-296.
    In this work we attempt to confront the orthodox widespread claim, present in the philosophical and foundational debates about Quantum Mechanics (QM), that ‘superpositions are never actually observed in the lab’. In order to do so, we begin by providing a critical analysis of the famous measurement problem which, we will argue, was originated as a consequence of the strict application of the empirical-positivist requirements to subsume the quantum formalism under their specific understanding of a physical ‘theory’. In (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Quantum Superposition, Necessity and the Identity of Indiscernibles.Allan F. Randall - unknown
    Those who interpret quantum mechanics literally are forced to follow some variant of Everett's relative state formulation (or "many worlds" interpretation). It is generally assumed that this is a rather bizarre result that many physicists (especially cosmologists) have been forced into because of the evidence. I look at the history of philosophy, however, reveals that rationalism has always flirted with this very idea, from Parmenides to Leibniz to modern times. I will survey some of the philosophical history, and show (...)
     
    Export citation  
     
    Bookmark  
  47.  77
    Interneuronal macroscopic quantum coherence in the brain cortex! The role of the intrasynaptic adhesive proteins beta-neurexin and neuroligin-1.Danko Georgiev - manuscript
    There are many blank areas in understanding the brain dynamics and especially how it gives rise to consciousness. Quantum mechanics is believed to be capable of explaining the enigma of conscious experience, however till now there is not good enough model considering both the data from clinical neurology and having some explanatory power! In this paper is presented a novel model in defence of macroscopic quantum events within and between neural cells. The beta-neurexin-neuroligin-1 link is claimed to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  48.  89
    Long-time behavior of macroscopic quantum systems: Commentary accompanying the English translation of John Von Neumann's 1929 article on the quantum ergodic theorem.Sheldon Goldstein & Roderich Tumulka - unknown
    The renewed interest in the foundations of quantum statistical mechanics in recent years has led us to study John von Neumann’s 1929 article on the quantum ergodic theorem. We have found this almost forgotten article, which until now has been available only in German, to be a treasure chest, and to be much misunderstood. In it, von Neumann studied the long-time behavior of macroscopic quantum systems. While one of the two theorems announced in his title, the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  49.  49
    The Paraconsistent Approach to Quantum Superpositions Reloaded: Formalizing Contradictiory Powers in the Potential Realm.Newton C. A. da Costa & Christian de Ronde - unknown
    In [7] the authors of this paper argued in favor of the possibility to consider a Paraconsistent Approach to Quantum Superpositions. We claimed that, even though most interpretations of quantum mechanics attempt to escape contradictions, there are many hints -coming from present technical and experimental developments in QM- that indicate it could be worth while to engage in a research of this kind. Recently, Arenhart and Krause have raised several arguments against the PAQS [1, 2, 3]. In [11, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  50.  28
    Understanding macroscopic quantum phenomena: The history of superfluidity 1941–1955.Kostas Gavroglu & Yorgos Goudaroulis - 1988 - Annals of Science 45 (4):367-385.
    In this paper we attempt to investigate the historical and methodological aspects of the developments related to superfluid helium, concentrating on the period between 1941 and 1955. During this period, the various developments constituted a series of steps towards redefining and refining the two-fluid concept devised to explain the unexpected macroscopic behaviour of superfluid helium. The idea that superfluids are essentially ‘quantum structures on a macroscopic scale’ functioned as a heuristic principle which guided the theoretical physicists engaged (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 975