This category needs an editor. We encourage you to help if you are qualified.
Volunteer, or read more about what this involves.
Related categories

805 found
Order:
1 — 50 / 805
Material to categorize
  1. H. J. Keisler and A. Tarski. From Accessible to Inaccessible Cardinals. Fundamenta Mathematicae, Vol. 53 , Pp. 225–308. , P. 119.). [REVIEW]Azriel Lévy - 1967 - Journal of Symbolic Logic 32 (3):411.
  2. Steven Orey. New Foundations and the Axiom of Counting. Duke Mathematical Journal, Vol. 31 , Pp. 655–660.Norman Feldman - 1969 - Journal of Symbolic Logic 34 (4):649.
  3. Steven Orey. New Foundations and the Axiom of Counting. Duke Mathematical Journal, Vol. 31 , Pp. 655–660.Norman Feldman - 1969 - Journal of Symbolic Logic 34 (4):649.
  4. A. Lévy and R. M. Solovay. Measurable Cardinals and the Continuum Hypothesis. Israel Journal of Mathematics, Vol. 5 , Pp. 234–248. [REVIEW]F. R. Drake - 1969 - Journal of Symbolic Logic 34 (4):654-655.
  5. A. Lévy and R. M. Solovay. Measurable Cardinals and the Continuum Hypothesis. Israel Journal of Mathematics, Vol. 5 , Pp. 234–248. [REVIEW]F. R. Drake - 1969 - Journal of Symbolic Logic 34 (4):654-655.
  6. Takeo Sugihara. The Numbers of Modalities in T Supplemented by the Axiom CL2pL3p. The Journal of Symbolic Logic, Vol. 27 No. 4 , Pp. 407–408.Krister Segerberg - 1969 - Journal of Symbolic Logic 34 (2):305.
  7. Takeo Sugihara. The Numbers of Modalities in T Supplemented by the Axiom CL2pL3p. The Journal of Symbolic Logic, Vol. 27 No. 4 , Pp. 407–408.Krister Segerberg - 1969 - Journal of Symbolic Logic 34 (2):305.
  8. C. C. Chang. Maximal N-Disjointed Sets and the Axiom of Choice. Fundamenta Mathematicae, Vol. 49 , Pp. 11–14.Azriel Lévy - 1970 - Journal of Symbolic Logic 35 (3):473.
  9. C. C. Chang. Maximal N-Disjointed Sets and the Axiom of Choice. Fundamenta Mathematicae, Vol. 49 , Pp. 11–14.Azriel Lévy - 1970 - Journal of Symbolic Logic 35 (3):473.
  10. J. W. Addison and Yiannis N. Moschovakis. Some Consequences of the Axiom of Definable Determinateness. Proceedings of the National Academy of Sciences, Vol. 59 , Pp. 708–712. - Donald A. Martin. The Axiom of Determinateness and Reduction Principles in the Analytical Hierarchy. Bulletin of the American Mathematical Society, Vol. 74 , Pp. 687–689. [REVIEW]James E. Baumgartner - 1973 - Journal of Symbolic Logic 38 (2):334.
  11. J. W. Addison and Yiannis N. Moschovakis. Some Consequences of the Axiom of Definable Determinateness. Proceedings of the National Academy of Sciences, Vol. 59 , Pp. 708–712. - Donald A. Martin. The Axiom of Determinateness and Reduction Principles in the Analytical Hierarchy. Bulletin of the American Mathematical Society, Vol. 74 , Pp. 687–689. [REVIEW]James E. Baumgartner - 1973 - Journal of Symbolic Logic 38 (2):334.
  12. Shaligram Singh. The Independence of a Strong Axiom of Choice. The Mathematical Gazette, Vol. 46 , Pp. 126–129.H. B. Enderton - 1973 - Journal of Symbolic Logic 38 (2):335.
  13. Shaligram Singh. The Independence of a Strong Axiom of Choice. The Mathematical Gazette, Vol. 46 , Pp. 126–129.H. B. Enderton - 1973 - Journal of Symbolic Logic 38 (2):335.
  14. E. M. Kleinberg. Strong Partition Properties for Infinite Cardinals. The Journal of Symbolic Logic, Vol. 35 , Pp. 410–428.James E. Baumgartner - 1975 - Journal of Symbolic Logic 40 (3):463.
  15. E. M. Kleinberg. Strong Partition Properties for Infinite Cardinals. The Journal of Symbolic Logic, Vol. 35 , Pp. 410–428.James E. Baumgartner - 1975 - Journal of Symbolic Logic 40 (3):463.
  16. Jack H. Silver. Measurable Cardinals and Well-Orderings. Annals of Mathematics, Ser. 2 Vol. 94 , Pp. 414–446.Menachem Magidor - 1974 - Journal of Symbolic Logic 39 (2):330-331.
  17. Herman Rubin and Jean E. Rubin. Equivalents of the Axiom of Choice, II. Studies in Logic and the Foundations of Mathematics, Vol. 116. North-Holland, Amsterdam, New York, and Oxford, 1985, Xxviii + 322 Pp. [REVIEW]David Pincus - 1987 - Journal of Symbolic Logic 52 (3):867-869.
  18. Herman Rubin and Jean E. Rubin. Equivalents of the Axiom of Choice, II. Studies in Logic and the Foundations of Mathematics, Vol. 116. North-Holland, Amsterdam, New York, and Oxford, 1985, Xxviii + 322 Pp. [REVIEW]David Pincus - 1987 - Journal of Symbolic Logic 52 (3):867-869.
  19. Donald A. Martin and John R. Steel. Projective Determinacy. Proceedings of the National Academy of Sciences of the United States of America, Vol. 85 , Pp. 6582–6586. - W. Hugh Woodin. Supercompact Cardinals, Sets of Reals, and Weakly Homogeneous Trees. Proceedings of the National Academy of Sciences of the United States of America, Vol. 85 , Pp. 6587–6591. - Donald A. Martin and John R. Steel. A Proof of Projective Determinacy. Journal of the American Mathematical Society, Vol. 2 , Pp. 71–125. [REVIEW]Matthew D. Foreman - 1992 - Journal of Symbolic Logic 57 (3):1132-1136.
  20. Michiel van Lambalgen. Independence, Randomness and the Axiom of Choice. The Journal of Symbolic Logic, Vol. 57 , Pp. 1274–1304.John C. Simms - 1994 - Journal of Symbolic Logic 59 (4):1433-1434.
  21. Michiel van Lambalgen. Independence, Randomness and the Axiom of Choice. The Journal of Symbolic Logic, Vol. 57 , Pp. 1274–1304.John C. Simms - 1994 - Journal of Symbolic Logic 59 (4):1433-1434.
  22. Arthur W. Apter. On the Least Strongly Compact Cardinal. Israel Journal of Mathematics, Vol. 35 , Pp. 225–233. - Arthur W. Apter. Measurability and Degrees of Strong Compactness. The Journal of Symbolic Logic, Vol. 46 , Pp. 249–254. - Arthur W. Apter. A Note on Strong Compactness and Supercompactness. Bulletin of the London Mathematical Society, Vol. 23 , Pp. 113–115. - Arthur W. Apter. On the First N Strongly Compact Cardinals. Proceedings of the American Mathematical Society, Vol. 123 , Pp. 2229–2235. - Arthur W. Apter and Saharon Shelah. On the Strong Equality Between Supercompactness and Strong Compactness.. Transactions of the American Mathematical Society, Vol. 349 , Pp. 103–128. - Arthur W. Apter and Saharon Shelah. Menas' Result is Best Possible. Ibid., Pp. 2007–2034. - Arthur W. Apter. More on the Least Strongly Compact Cardinal. Mathematical Logic Quarterly, Vol. 43 , Pp. 427–430. - Arthur W. Apter. Laver Indestructibility and the Class of Compact Cardinals. The Journal of Sy. [REVIEW]James W. Cummings - 2000 - Bulletin of Symbolic Logic 6 (1):86-89.
  23. William Mitchell, Ernest Schimmerling, and John Steel. The Covering Lemma Up to a Woodin Cardinal. Annals of Pure and Applied Logic, Vol. 84 , Pp. 219–255. [REVIEW]Itay Neeman - 2003 - Bulletin of Symbolic Logic 9 (3):414-416.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  24. Saharon Shelah and Hugh Woodin. Large Cardinals Imply That Every Reasonably Definable Set of Reals is Lebesgue Measurable. Israel Journal of Mathematics, Vol. 70 , Pp. 381–394. [REVIEW]Joan Bagaria - 2002 - Bulletin of Symbolic Logic 8 (4):543-545.
  25. Saharon Shelah and Hugh Woodin. Large Cardinals Imply That Every Reasonably Definable Set of Reals is Lebesgue Measurable. Israel Journal of Mathematics, Vol. 70 , Pp. 381–394. [REVIEW]Joan Bagaria - 2002 - Bulletin of Symbolic Logic 8 (4):543-545.
  26. W. Hugh Woodin. The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal. De Gruyter Series in Logic and its Applications, No. 1. Walter de Gruyter, Berlin and New York 1999, Vi + 934 Pp. [REVIEW]Paul Larson - 2002 - Bulletin of Symbolic Logic 8 (1):91-93.
  27. Paul Howard and Jean E. Rubin. Consequences of the Axiom of Choice, Mathematical Surveys and Monographs, Vol. 59. American Mathematical Society, Providence, RI, 1998, Viii + 432 Pp. [REVIEW]Andreas Blass - 2005 - Bulletin of Symbolic Logic 11 (1):61-63.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  28. Constructive Set Theory with Operations.Andrea Cantini & Laura Crosilla - 2008 - In Logic Colloquium 2004.
    We present an extension of constructive Zermelo{Fraenkel set theory [2]. Constructive sets are endowed with an applicative structure, which allows us to express several set theoretic constructs uniformly and explicitly. From the proof theoretic point of view, the addition is shown to be conservative. In particular, we single out a theory of constructive sets with operations which has the same strength as Peano arithmetic.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  29. No Decreasing Sequence of Cardinals.Paul Howard & Eleftherios Tachtsis - 2016 - Archive for Mathematical Logic 55 (3-4):415-429.
    In set theory without the Axiom of Choice, we investigate the set-theoretic strength of the principle NDS which states that there is no function f on the set ω of natural numbers such that for everyn ∈ ω, f ≺ f, where for sets x and y, x ≺ y means that there is a one-to-one map g : x → y, but no one-to-one map h : y → x. It is a long standing open problem whether NDS implies (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30. Modal Set Theory.Christopher Menzel - forthcoming - In Otávio Bueno & Scott Shalkowski (eds.), The Routledge Handbook of Modality. London and New York: Routledge.
    This article presents an overview of the basic philosophical motivations for, and some recent work in, modal set theory.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Characterizing Large Cardinals in Terms of Layered Posets.Sean Cox & Philipp Lücke - 2017 - Annals of Pure and Applied Logic 168 (5):1112-1131.
  32. On the Theory of Axiom-Systems.Olaf Helmer - 1935 - Analysis 3 (1-2):1-11.
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  33. Epistemology of Logic - Logic-Dialectic or Theory of the Knowledge.Epameinondas Xenopoulos - 1998 - Dissertation,
    1994.Επιστημολογία της Λογικής. Συγγραφέας Επαμεινώνδας Ξενόπουλος Μοναδική μελέτη και προσέγγιση της θεωρίας της γνώσης, για την παγκόσμια βιβλιογραφία, της διαλεκτικής πορείας της σκέψης από την λογική πλευρά της και της μελλοντικής μορφής που θα πάρουν οι διαλεκτικές δομές της, στην αδιαίρετη ενότητα γνωσιοθεωρίας, λογικής και διαλεκτικής, με την «μέθοδο του διαλεκτικού υλισμού». Έργο βαρύ με θέμα εξαιρετικά δύσκολο διακατέχεται από πρωτοτυπία και ζωντάνια που γοητεύει τον κάθε ανήσυχο στοχαστή από τις πρώτες γραμμές.
    Remove from this list   Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  34. Games, Scales, and Suslin Cardinals. The Cabal Seminar, Volume I, Lecture Notes in Logic, Vol. 31.Alessandro Andretta - 2012 - Bulletin of Symbolic Logic 18 (1):122-126.
  35. AD[Syntactic Turnstile] the [Aleph]"N" Are Jonsson Cardinals and [Aleph] Omega is a Rowbottom Cardinal.E. M. Kleinberg - 1977 - Annals of Mathematical Logic 12 (3):229.
  36. The Necessary Maximality Principle for C. C. C. Forcing is Equiconsistent with a Weakly Compact Cardinal.Joel D. Hamkins & W. Hugh Woodin - 2005 - Mathematical Logic Quarterly 51 (5):493-498.
    The Necessary Maximality Principle for c. c. c. forcing with real parameters is equiconsistent with the existence of a weakly compact cardinal.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  37. Some Results on Partitions and Cartesian Products in the Absence of the Axiom of Choice.A. H. Kruse - 1974 - Mathematical Logic Quarterly 20 (8-12):149-172.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38. Concerning the Proper Axioms of S4.02.Bolesław Sobociński - 1974 - Notre Dame Journal of Formal Logic 15:169.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  39. The Cardinals Below [Ω1]<Ω1.W. Hugh Woodin - 2006 - Annals of Pure and Applied Logic 140 (1-3):161-232.
    The results of this paper concern the effective cardinal structure of the subsets of [ω1]<ω1, the set of all countable subsets of ω1. The main results include dichotomy theorems and theorems which show that the effective cardinal structure is complicated.
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  40. Boolean Extensions and Measurable Cardinals.K. Kunen - 1971 - Annals of Pure and Applied Logic 2 (4):359.
  41. Powers of Regular Cardinals.William B. Easton - 1970 - Annals of Pure and Applied Logic 1 (2):139.
  42. Successive Large Cardinals.Everett L. Bull - 1978 - Annals of Pure and Applied Logic 15 (2):161.
  43. Omega ¹-Constructible Universe and Measurable Cardinals.Claude Sureson - 1986 - Annals of Pure and Applied Logic 30 (3):293.
  44. Strong Compactness and Other Cardinal Sins.Jussi Ketonen - 1972 - Annals of Pure and Applied Logic 5 (1):47.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  45. Some Weak Versions of Large Cardinal Axioms.Keith J. Devlin - 1973 - Annals of Pure and Applied Logic 5 (4):291.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  46. Some Combinatorial Problems Concerning Uncountable Cardinals.Thomas J. Jech - 1973 - Annals of Pure and Applied Logic 5 (3):165.
  47. Adding Closed Cofinal Sequences to Large Cardinals.Lon Berk Radin - 1982 - Annals of Pure and Applied Logic 22 (3):243.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  48. Flipping Properties: A Unifying Thread in the Theory of Large Cardinals.F. G. Abramson, L. A. Harrington, E. M. Kleinberg & W. S. Zwicker - 1977 - Annals of Pure and Applied Logic 12 (1):25.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  49. How Many Normal Measures Can ℵmath Image Carry?Arthur W. Apter - 2010 - Mathematical Logic Quarterly 56 (2):164-170.
    Relative to the existence of a supercompact cardinal with a measurable cardinal above it, we show that it is consistent for ℵ1 to be regular and for ℵmath image to be measurable and to carry precisely τ normal measures, where τ ≥ ℵmath image is any regular cardinal. This extends the work of [2], in which the analogous result was obtained for ℵω +1 using the same hypotheses.
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  50. Sequential Topological Conditions in ℝ in the Absence of the Axiom of Choice.Gonçalo Gutierres - 2003 - Mathematical Logic Quarterly 49 (3):293-298.
    It is known that – assuming the axiom of choice – for subsets A of ℝ the following hold: A is compact iff it is sequentially compact, A is complete iff it is closed in ℝ, ℝ is a sequential space. We will show that these assertions are not provable in the absence of the axiom of choice, and that they are equivalent to each.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 805