Results for 'Klein–Gordon equation in Riemannian spaces'

1000+ found
Order:
  1.  6
    Formulation of Spinors in Terms of Gauge Fields.S. R. Vatsya - 2015 - Foundations of Physics 45 (2):142-157.
    It is shown in the present paper that the transformation relating a parallel transported vector in a Weyl space to the original one is the product of a multiplicative gauge transformation and a proper orthochronous Lorentz transformation. Such a Lorentz transformation admits a spinor representation, which is obtained and used to deduce the transportation properties of a Weyl spinor, which are then expressed in terms of a composite gauge group defined as the product of a multiplicative gauge group and the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  2.  4
    de Broglie's Pilot-Wave Theory for the Klein–Gordon Equation and Its Space-Time Pathologies.George Horton, Chris Dewdney & Ulrike Ne'eman - 2002 - Foundations of Physics 32 (3):463-476.
    We illustrate, using a simple model, that in the usual formulation the time-component of the Klein–Gordon current is not generally positive definite even if one restricts allowed solutions to those with positive frequencies. Since in de Broglie's theory of particle trajectories the particle follows the current this leads to difficulties of interpretation, with the appearance of trajectories which are closed loops in space-time and velocities not limited from above. We show that at least this pathology can be avoided if (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  6
    A Novel Interpretation of the Klein-Gordon Equation.K. B. Wharton - 2010 - Foundations of Physics 40 (3):313-332.
    The covariant Klein-Gordon equation requires twice the boundary conditions of the Schrödinger equation and does not have an accepted single-particle interpretation. Instead of interpreting its solution as a probability wave determined by an initial boundary condition, this paper considers the possibility that the solutions are determined by both an initial and a final boundary condition. By constructing an invariant joint probability distribution from the size of the solution space, it is shown that the usual measurement probabilities can nearly (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  4.  11
    Elimination of the Potential from the Schrödinger and Klein–Gordon Equations by Means of Conformal Transformations.Valerio Faraoni & Donovan M. Faraoni - 2002 - Foundations of Physics 32 (5):773-788.
    The potential term in the Schrödinger equation can be eliminated by means of a conformal transformation, reducing it to an equation for a free particle in a conformally related fictitious configuration space. A conformal transformation can also be applied to the Klein–Gordon equation, which is reduced to an equation for a free massless field in an appropriate (conformally related) spacetime. These procedures arise from the observation that the Jacobi form of the least action principle and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  5.  4
    Theory of Stochastic Schrödinger Equation in Complex Vector Space.Kundeti Muralidhar - 2017 - Foundations of Physics 47 (4):532-552.
    A generalized Schrödinger equation containing correction terms to classical kinetic energy, has been derived in the complex vector space by considering an extended particle structure in stochastic electrodynamics with spin. The correction terms are obtained by considering the internal complex structure of the particle which is a consequence of stochastic average of particle oscillations in the zeropoint field. Hence, the generalised Schrödinger equation may be called stochastic Schrödinger equation. It is found that the second order correction terms (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6. On Cellular Automata Representation of Submicroscopic Physics: From Static Space to Zuse’s Calculating Space Hypothesis.Victor Christianto, Volodymyr Krasnoholovets & Florentin Smarandache - manuscript
    In some recent papers (G. ‘t Hooft and others), it has been argued that quantum mechanics can arise from classical cellular automata. Nonetheless, G. Shpenkov has proved that the classical wave equation makes it possible to derive a periodic table of elements, which is very close to Mendeleyev’s one, and describe also other phenomena related to the structure of molecules. Hence the classical wave equation complements Schrödinger’s equation, which implies the appearance of a cellular automaton molecular model (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  7.  4
    On Gravitational Effects in the Schrödinger Equation.M. D. Pollock - 2014 - Foundations of Physics 44 (4):368-388.
    The Schrödinger equation for a particle of rest mass $m$ and electrical charge $ne$ interacting with a four-vector potential $A_i$ can be derived as the non-relativistic limit of the Klein–Gordon equation $\left( \Box '+m^2\right) \varPsi =0$ for the wave function $\varPsi $ , where $\Box '=\eta ^{jk}\partial '_j\partial '_k$ and $\partial '_j=\partial _j -\mathrm {i}n e A_j$ , or equivalently from the one-dimensional action $S_1=-\int m ds +\int neA_i dx^i$ for the corresponding point particle in the semi-classical (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  7
    Causal interpretation of the modified Klein-Gordon equation.P. N. Kaloyerou - 1995 - Foundations of Physics 25 (10-12):1413.
    A consistent causal interpretation of the Klein-Gordon equation treated as a field equation has been developed, and leads to a model of entities described by the Klein-Gordon equation, i.e., spinless, massive bosons, as objectively existing fields. The question arises, however, as to whether a causal interpretation based on a particle ontology of the Klein-Gordon equation is also possible. Our purpose in this article will be to indicate, by making what we believe is a best possible attempt (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  5
    Classical and Non-relativistic Limits of a Lorentz-Invariant Bohmian Model for a System of Spinless Particles.Sergio Hernández-Zapata & Ernesto Hernández-Zapata - 2010 - Foundations of Physics 40 (5):532-544.
    A completely Lorentz-invariant Bohmian model has been proposed recently for the case of a system of non-interacting spinless particles, obeying Klein-Gordon equations. It is based on a multi-temporal formalism and on the idea of treating the squared norm of the wave function as a space-time probability density. The particle’s configurations evolve in space-time in terms of a parameter σ with dimensions of time. In this work this model is further analyzed and extended to the case of an interaction with an (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  81
    From Acoustic Analog of Space, Cancer Therapy, to Acoustic Sachs-Wolfe Theorem: A Model of the Universe as a Guitar.Victor Christianto, Florentin Smarandache & Yunita Umniyati - manuscript
    It has been known for long time that the cosmic sound wave was there since the early epoch of the Universe. Signatures of its existence are abound. However, such an acoustic model of cosmology is rarely developed fully into a complete framework from the notion of space, cancer therapy up to the sky. This paper may be the first attempt towards such a complete description of the Universe based on classical wave equation of sound. It is argued that one (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  11.  12
    Lagrangian form of Schrödinger equation.D. Arsenović, N. Burić, D. M. Davidović & S. Prvanović - 2014 - Foundations of Physics 44 (7):725-735.
    Lagrangian formulation of quantum mechanical Schrödinger equation is developed in general and illustrated in the eigenbasis of the Hamiltonian and in the coordinate representation. The Lagrangian formulation of physically plausible quantum system results in a well defined second order equation on a real vector space. The Klein–Gordon equation for a real field is shown to be the Lagrangian form of the corresponding Schrödinger equation.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  12.  23
    Space–time philosophy reconstructed via massive Nordström scalar gravities? Laws vs. geometry, conventionality, and underdetermination.J. Brian Pitts - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:73-92.
    What if gravity satisfied the Klein-Gordon equation? Both particle physics from the 1920s-30s and the 1890s Neumann-Seeliger modification of Newtonian gravity with exponential decay suggest considering a "graviton mass term" for gravity, which is _algebraic_ in the potential. Unlike Nordström's "massless" theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman-Cunningham conformal group. It therefore exhibits the whole of Minkowski space-time structure, albeit only indirectly concerning volumes. (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  13.  4
    The emergence of a Kaluza-Klein microgenometry from the invariants of optimally Euclidean Lorentzian spaces.José G. Vargas & Douglas G. Torr - 1997 - Foundations of Physics 27 (4):533-558.
    It is shown that relativistic spacetimes can be viewed as Finslerian spaces endowed with a positive definite distance (ω0, mod ωi) rather than as pariah, pseudo-Riemannian spaces. Since the pursuit of better implementations of “Euclidicity in the small” advocates absolute parallelism, teleparallel nonlinear Euclidean (i.e., Finslerian) connections are scrutinized. The fact that (ωμ, ω0 i) is the set of horizontal fundamental 1-forms in the Finslerian fibration implies that it can be used in principle for obtainingcompatible new structures. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  8
    The wave properties of matter and the zeropoint radiation field.L. de la Peña & A. M. Cetto - 1994 - Foundations of Physics 24 (5):753-781.
    The origin of the wave properties of matter is discussed from the point of view of stochastic electrodynamics. A nonrelativistic model of a charged particle with an effective structure embedded in the random zeropoint radiation field reveals that the field induces a high-frequency vibration on the particle; internal consistency of the theory fixes the frequency of this jittering at mc2/ħ. The particle is therefore assumed to interact intensely with stationary zeropoint waves of this frequency as seen from its proper frame (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  15
    Classical variational derivation and physical interpretation of Dirac's equation.B. H. Lavenda - 1987 - Foundations of Physics 17 (3):221-237.
    A simple random walk model has been shown by Gaveauet al. to give rise to the Klein-Gordon equation under analytic continuation. This absolutely most probable path implies that the components of the Dirac wave function have a common phase; the influence of spin on the motion is neglected. There is a nonclassical path of relative maximum likelihood which satisfies the constraint that the probability density coincide with the quantum mechanical definition. In three space dimensions, and in the presence of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  16.  2
    Klein's paradox in a four-space formulation of Dirac's equation.A. B. Evans - 1991 - Foundations of Physics 21 (6):633-647.
    A 4-space formulation of Dirac's equation gives results formally identical to those of the usual Klein paradox. However, some extra physical detail can be inferred, and this suggests that the most extreme case involves pair production within the potential barrier.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  27
    Relativistic Bohmian Trajectories and Klein-Gordon Currents for Spin-0 Particles.M. Alkhateeb & A. Matzkin - 2022 - Foundations of Physics 52 (5):1-13.
    It is generally believed that the de Broglie-Bohm model does not admit a particle interpretation for massive relativistic spin-0 particles, on the basis that particle trajectories cannot be defined. We show this situation is due to the fact that in the standard representation of the Klein-Gordon equation the wavefunction systematically contains superpositions of particle and anti-particle contributions. We argue that by working in a Foldy-Wouthuysen type representation uncoupling the particle from the anti-particle evolutions, a positive conserved density for a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18.  13
    SU(2) ×U(1) Gauge theory of bosonic and fermionic fields inS 3 ×R space-time.Ciprian Dariescu & Marina -Aura Dariescu - 1994 - Foundations of Physics 24 (11):1577-1582.
    The tetradic Lorentz-gauge invariant formulation of the SU(2) × U(1) theory in S3 × R space-time is presented and the general gauge covariant Dirac-Klein-Gordon-Maxwell-Yang-Mills equations are derived. A direct comparison of these equations to those of the SU(2) × U(1) gauge theory on Minkowskian background points out major differences effectively induced by the minimally coupling to S3 × R gravity.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  19
    Causal Lie Products of Free Fields and the Emergence of Quantum Field Theory.Detlev Buchholz, Roberto Longo & Karl-Henning Rehren - 2022 - Foundations of Physics 52 (5):1-7.
    All causal Lie products of solutions of the Klein-Gordon equation and the wave equation in Minkowski space are determined. The results shed light on the origin of the algebraic structures underlying quantum field theory.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  20.  5
    Dissipation in the Klein-Gordon Field.Boris Leaf - 1999 - Foundations of Physics 29 (9):1457-1478.
    The formalism of (±)-frequency parts , previously applied to solution of the D'Alembert equation in the case of the electromagnetic field, is applied to solution of the Klein-Gordon equation for the K-G field in the presence of sources. Retarded and advanced field operators are obtained as solutions, whose frequency parts satisfy a complex inhomogeneous K-G equation. Fourier transforms of these frequency parts are solutions of the central equation, which determines the time dependence of the destruction/creation operators (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  21.  2
    Spacetime Superoscillations and the Relativistic Quantum Potential.Yakov Bloch - 2023 - Foundations of Physics 53 (2):1-9.
    In a recent paper (Berry in Eur J Phys 42: 015401, 2020), the boundaries of superoscillatory regions (the regions where a function oscillates faster than its fastest Fourier component) of waves described by the Helmholtz equation in a uniform medium were related to zeros of the quantum potential, arising in the Madelung formulation of quantum mechanics. We generalize this result, showing that the relativistic counterpart, which is, essentially, a Klein-Gordon equation, exhibits the same behaviour, but in spacetime, giving (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  22.  6
    Klein Paradox for the Bosonic Equation in the Presence of Minimal Length.M. Falek, M. Merad & M. Moumni - 2015 - Foundations of Physics 45 (5):507-524.
    We present an exact solution of the one-dimensional modified Klein Gordon and Duffin Kemmer Petiau equations with a step potential in the presence of minimal length in the uncertainty relation, where the expressions of the new transmission and reflection coefficients are determined for all cases. As an application, the Klein paradox in the presence of minimal length is discussed for all equations.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  23.  1
    A Time–Space Symmetry Based Cylindrical Model for Quantum Mechanical Interpretations.Thuan Vo Van - 2017 - Foundations of Physics 47 (12):1559-1581.
    Following a bi-cylindrical model of geometrical dynamics, our study shows that a 6D-gravitational equation leads to geodesic description in an extended symmetrical time–space, which fits Hubble-like expansion on a microscopic scale. As a duality, the geodesic solution is mathematically equivalent to the basic Klein–Gordon–Fock equations of free massive elementary particles, in particular, the squared Dirac equations of leptons. The quantum indeterminism is proved to have originated from space–time curvatures. Interpretation of some important issues of quantum mechanical reality is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  62
    Dirac-Type Equations in a Gravitational Field, with Vector Wave Function.Mayeul Arminjon - 2008 - Foundations of Physics 38 (11):1020-1045.
    An analysis of the classical-quantum correspondence shows that it needs to identify a preferred class of coordinate systems, which defines a torsionless connection. One such class is that of the locally-geodesic systems, corresponding to the Levi-Civita connection. Another class, thus another connection, emerges if a preferred reference frame is available. From the classical Hamiltonian that rules geodesic motion, the correspondence yields two distinct Klein-Gordon equations and two distinct Dirac-type equations in a general metric, depending on the connection used. Each of (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  3
    Quantum mechanics as demanded by the special theory of relativity.Charles Harding - 1977 - Foundations of Physics 7 (1-2):69-76.
    We present a new approach on the interpretation of the quantum mechanism. The derivation is phenomenological and incorporates an energetic vacuum which interacts with elementary particles. We consider a classical ensemble average for the square of 4-velocities of identical elementary particles with the same initial conditions in Minkowski space. The relativistic extension of a result in Brownian motion allows the variance to be identified with Bohm's quantum potential. A simple relation between 4-velocities and 4-momenta at a specific 4-position with given (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26.  4
    Vector potential and Riemannian space.C. Lanczos - 1974 - Foundations of Physics 4 (1):137-147.
    This paper uncovers the basic reason for the mysterious change of sign from plus to minus in the fourth coordinate of nature's Pythagorean law, usually accepted on empirical grounds, although it destroys the rational basis of a Riemannian geometry. Here we assume a genuine, positive-definite Riemannian space and an action principle which is quadratic in the curvature quantities (and thus scale invariant). The constant σ between the two basic invariants is equated to1/2. Then the matter tensor has the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27.  7
    On the electromagnetic interaction in relativistic quantum mechanics.L. P. Horwitz - 1984 - Foundations of Physics 14 (10):1027-1046.
    A fundamental problem in the construction of local electromagnetic interactions in the framework of relativistic wave equations of Klein-Gordon or Dirac type is discussed, and shown to be resolved in a relativistic quantum theory of events described by functions in a Hilbert space on the manifold of space-time. The relation, abstracted from the structure of the electromagnetic current, between sequences of events, parametrized by an evolution parameter τ (“historical time”), and the commonly accepted notion of particles is reviewed. As an (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  28.  19
    Accelerating Expansion: Philosophy and Physics with a Positive Cosmological Constant.Gordon Belot - 2023 - New York: Oxford University Press.
    Accelerating Expansion explores some of the philosophical implications of modern cosmology, focused on the significance that the discovery of the accelerating expansion of the Universe has for our understanding of time, geometry, and physics. The appearance of the cosmological constant in the equations of general relativity allows one to model universes in which space has an inherent tendency towards expansion. This constant, introduced by Einstein but subsequently abandoned by him, returned to centre stage with the discovery of the accelerating expansion. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  10
    Field theory onR×S 3 topology: Lagrangian formulation. [REVIEW]M. Carmeli & A. Malka - 1990 - Foundations of Physics 20 (1):71-110.
    A brief description of the ordinary field theory, from the variational and Noether's theorem point of view, is outlined. A discussion is then given of the field equations of Klein-Gordon, Schrödinger, Dirac, Weyl, and Maxwell in their ordinary form on the Minkowskian space-time manifold as well as on the topological space-time manifold R × S3 as they were formulated by Carmeli and Malin, including the latter's most general solutions. We then formulate the general variational principle in the R × S3 (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  30.  9
    Abundant Bounded and Unbounded Solitary, Periodic, Rogue-Type Wave Solutions and Analysis of Parametric Effect on the Solutions to Nonlinear Klein–Gordon Model.Mohammad Mobarak Hossain, Alrazi Abdeljabbar, Harun-Or Roshid, Md Mamunur Roshid & Abu Naim Sheikh - 2022 - Complexity 2022:1-19.
    This paper exploits the modified simple equation and dynamical system schemes to integrate the Klein–Gordon model amid quadratic nonlinearity arising in nonlinear optics, quantum theories, and solid state physics. By implementing the modified simple equation technique, we develop some disguise adaptation of analytical solutions in terms of hyperbolic, exponential, and trigonometric functions with some special parameters. We apply the dynamical system to bifurcate the model and draw distinct phase portraits on unlike parametric constraints. Following each orbit of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  11
    Teleparallel Kähler Calculus for Spacetime.Jose G. Vargas & Douglas G. Torr - 1998 - Foundations of Physics 28 (6):931-958.
    In a recent paper [J. G. Vargas and D. G. Torr, Found. Phys. 27, 599 (1997)], we have shown that a subset of the differential invariants that define teleparallel connections in spacetime generates a teleparallel Kaluza-Klein space (KKS) endowed with a very rich Clifford structure. A canonical Dirac equation hidden in this structure might be uncovered with the help of a teleparallel Kähler calculus in KKS. To bridge the gap to such a calculus from the existing Riemannian Kähler (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  7
    Gravitation and spontaneous symmetry breaking.Jacob D. Bekenstein - 1986 - Foundations of Physics 16 (5):409-422.
    It is pointed out that the Higgs field may be supplanted by an ordinary Klein-Gordon field conformally coupled to the space-time curvature, and with very small, real, rest mass. Provided there is a bare cosmological constant of order of its square mass, this field can induce spontaneous symmetry breaking with a mass scale that can be as large as the Planck-Wheeler mass, but may be smaller. It can thus play a natural role in grand unified theories. In the theory presented (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33.  15
    Novel Principles and the Charge-Symmetric Design of Dirac’s Quantum Mechanics: I. Enhanced Eriksen’s Theorem and the Universal Charge-Index Formalism for Dirac’s Equation in External Static Fields.Yu V. Kononets - 2016 - Foundations of Physics 46 (12):1598-1633.
    The presented enhanced version of Eriksen’s theorem defines an universal transform of the Foldy–Wouthuysen type and in any external static electromagnetic field reveals a discrete symmetry of Dirac’s equation, responsible for existence of a highly influential conserved quantum number—the charge index distinguishing two branches of DE spectrum. It launches the charge-index formalism obeying the charge-index conservation law. Via its unique ability to manipulate each spectrum branch independently, the CIF creates a perfect charge-symmetric architecture of Dirac’s quantum mechanics, which resolves (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  34.  1
    Field theory onR×S 3 topology. IV: Electrodynamics of magnetic moments. [REVIEW]M. Carmeli & S. Malin - 1986 - Foundations of Physics 16 (8):791-806.
    The equations of electrodynamics for the interactions between magnetic moments are written on R×S3 topology rather than on Minkowskian space-time manifold of ordinary Maxwell's equations. The new field equations are an extension of the previously obtained Klein-Gordon-type, Schrödinger-type, Weyl-type, and Dirac-type equations. The concept of the magnetic moment in our case takes over that of the charge in ordinary electrodynamics as the fundamental entity. The new equations have R×S3 invariance as compared to the Lorentz invariance of Maxwell's equations. The solutions (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  35.  36
    On the gyromagnetic ratio in the Kaluza-Klein theories and the Schuster-Blackett law.A. O. Barut & Thomas Gornitz - 1985 - Foundations of Physics 15 (4):433-437.
    Pauli's five-dimensional Dirac equation in projective space, which results in an anomalous magnetic moment term in four dimensions, is related to the Schuster-Blackett law of the magnetic field of rotating bodies and to the recent results on the gyromagnetic ratio in Kaluza-Klein theories.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  62
    Identical motion in relativistic quantum and classical mechanics.Stephen Breen & Peter D. Skiff - 1977 - Foundations of Physics 7 (7-8):589-596.
    The Klein-Gordon equation for the stationary state of a charged particle in a spherically symmetric scalar field is partitioned into a continuity equation and an equation similar to the Hamilton-Jacobi equation. There exists a class of potentials for which the Hamilton-Jacobi equation is exactly obtained and examples of these potentials are given. The partitionAnsatz is then applied to the Dirac equation, where an exact partition into a continuity equation and a Hamilton-Jacobi equation (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  37.  17
    A 4*4 Schroedinger equation from relativistic total energy with a 2*2 Lorentz invariant solution.Han Geurdes - 2018 - High Energy Density Physics 26:10.1016/j.hedp.2017.12.004.
    Abstract In this paper an algebraic method is presented to derive a 4 × 4 Hermitian Schrödinger equation from with and . The latter operator replacement is a common procedure in a quantum description of the total energy. In the derivation we don’t make use of Dirac’s method of four vectors. Moreover, the root operator isn’t squared either. Instead, use is made of the algebra of operators to derive a Hermitian matrix Schrödinger equation. We believe that new physics (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  38.  2
    Evolution of Superoscillations in the Dirac Field.Fabrizio Colombo & Giovanni Valente - 2020 - Foundations of Physics 50 (11):1356-1375.
    Superoscillating functions are band-limited functions that can oscillate faster than their fastest Fourier component. The study of the evolution of superoscillations as initial datum of field equations requires the notion of supershift, which generalizes the concept of superoscillations. The present paper has a dual purpose. The first one is to give an updated and self-contained explanation of the strategy to study the evolution of superoscillations by referring to the quantum-mechanical Schrödinger equation and its variations. The second purpose is to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  39.  15
    The motion of small bodies in space‐time.Robert Geroch & James Owen Weatherall - unknown
    We consider the motion of small bodies in general relativity. The key result captures a sense in which such bodies follow timelike geodesics. This result clarifies the relationship between approaches that model such bodies as distributions supported on a curve, and those that employ smooth fields supported in small neighborhoods of a curve. This result also applies to "bodies" constructed from wave packets of Maxwell or Klein-Gordon fields. There follows a simple and precise formulation of the optical limit for Maxwell (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  40.  7
    Eikonal Approximation to 5D Wave Equations and the 4D Space-Time Metric.O. Oron & L. P. Horwitz - 2003 - Foundations of Physics 33 (9):1323-1338.
    We apply a method analogous to the eikonal approximation to the Maxwell wave equations in an inhomogeneous anisotropic medium and geodesic motion in a three dimensional Riemannian manifold, using a method which identifies the symplectic structure of the corresponding mechanics, to the five dimensional generalization of Maxwell theory required by the gauge invariance of Stueckelberg's covariant classical and quantum dynamics. In this way, we demonstrate, in the eikonal approximation, the existence of geodesic motion for the flow of mass in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  41.  13
    Cartan–Weyl Dirac and Laplacian Operators, Brownian Motions: The Quantum Potential and Scalar Curvature, Maxwell’s and Dirac-Hestenes Equations, and Supersymmetric Systems. [REVIEW]Diego L. Rapoport - 2005 - Foundations of Physics 35 (8):1383-1431.
    We present the Dirac and Laplacian operators on Clifford bundles over space–time, associated to metric compatible linear connections of Cartan–Weyl, with trace-torsion, Q. In the case of nondegenerate metrics, we obtain a theory of generalized Brownian motions whose drift is the metric conjugate of Q. We give the constitutive equations for Q. We find that it contains Maxwell’s equations, characterized by two potentials, an harmonic one which has a zero field (Bohm-Aharonov potential) and a coexact term that generalizes the Hertz (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  42.  7
    On a relativistic particle in probabilistic physics.L. S. Mayants - 1974 - Foundations of Physics 4 (3):335-353.
    Some problems relating to the probabilistic description of a free particle and of a charged particle moving in an electromagnetic field are discussed. A critical analysis of the Klein-Gordon equation and of the Dirac equation is given. It is also shown that there is no connection between commutativity of operators for physical quantities and the existence of their joint probability. It is demonstrated that the Heisenberg uncertainty relation is not universal and explained why this is so. A universal (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  43.  21
    A Symmetrical Interpretation of the Klein-Gordon Equation.Michael B. Heaney - 2013 - Foundations of Physics 43 (6):733-746.
    This paper presents a new Symmetrical Interpretation (SI) of relativistic quantum mechanics which postulates: quantum mechanics is a theory about complete experiments, not particles; a complete experiment is maximally described by a complex transition amplitude density; and this transition amplitude density never collapses. This SI is compared to the Copenhagen Interpretation (CI) for the analysis of Einstein’s bubble experiment. This SI makes several experimentally testable predictions that differ from the CI, solves one part of the measurement problem, resolves some inconsistencies (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44.  3
    Embedding of Particle Waves in a Schwarzschild Metric Background.David Zareski - 2000 - Foundations of Physics 30 (2):253-285.
    The special and general relativity theories are used to demonstrate that the velocity of an unradiative particle in a Schwarzschild metric background, and in an electrostatic field, is the group velocity of a wave that we call a “particle wave,” which is a monochromatic solution of a standard equation of wave motion and possesses the following properties. It generalizes the de Broglie wave. The rays of a particle wave are the possible particle trajectories, and the motion equation of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  45.  6
    Group theory and solutions of classical field theories with polynomial nonlinearities.A. M. Grundland, J. A. Tuszyński & P. Winternitz - 1993 - Foundations of Physics 23 (4):633-665.
    In this paper we investigate a number of analytical solutions to the polynomial class of nonlinear Klein-Gordon equations in multidimensional spacetime. This is done in the context of classical φ4 and φ6 field theory, the former with and without the inclusion of an external force field conjugate to φ. Both massive (m≠0) and massless (m=0) cases are considered, as well as tachyonic solutions allowed (v>c). We first present a complete set of translationally invariant solutions for the φ4 model and demonstrate (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  46.  73
    Quantity in Quantum Mechanics and the Quantity of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (47):1-10.
    The paper interprets the concept “operator in the separable complex Hilbert space” (particalry, “Hermitian operator” as “quantity” is defined in the “classical” quantum mechanics) by that of “quantum information”. As far as wave function is the characteristic function of the probability (density) distribution for all possible values of a certain quantity to be measured, the definition of quantity in quantum mechanics means any unitary change of the probability (density) distribution. It can be represented as a particular case of “unitary” qubits. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  47.  2
    U(1) gauge theory of the quantum hall effect.C. Dariescu & Marina Dariescu - 1991 - Foundations of Physics 21 (11):1329-1333.
    The solution of the Klein-Gordon equation for a complex scalar field in the presence of an electrostatic field orthogonal to a magnetostatic field is analyzed. Considerations concerning the quantum Hall-type evolution are presented also. Using the Hamiltonian with a self-interaction term, we obtain a critical value for the magnetic field in the case of the spontaneous symmetry breaking.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  48.  16
    Ethical Issues in Intraoperative Neuroscience Research: Assessing Subjects’ Recall of Informed Consent and Motivations for Participation.Anna Wexler, Rebekah J. Choi, Ashwin G. Ramayya, Nikhil Sharma, Brendan J. McShane, Love Y. Buch, Melanie P. Donley-Fletcher, Joshua I. Gold, Gordon H. Baltuch, Sara Goering & Eran Klein - 2022 - AJOB Empirical Bioethics 13 (1):57-66.
    BackgroundAn increasing number of studies utilize intracranial electrophysiology in human subjects to advance basic neuroscience knowledge. However, the use of neurosurgical patients as human research subjects raises important ethical considerations, particularly regarding informed consent and undue influence, as well as subjects’ motivations for participation. Yet a thorough empirical examination of these issues in a participant population has been lacking. The present study therefore aimed to empirically investigate ethical concerns regarding informed consent and voluntariness in Parkinson’s disease patients undergoing deep brain (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  49.  5
    The Stationary Dirac Equation as a Generalized Pauli Equation for Two Quasiparticles.Nikolay L. Chuprikov - 2015 - Foundations of Physics 45 (6):644-656.
    By analyzing the Dirac equation with static electric and magnetic fields it is shown that Dirac’s theory is nothing but a generalized one-particle quantum theory compatible with the special theory of relativity. This equation describes a quantum dynamics of a single relativistic fermion, and its solution is reduced to solution of the generalized Pauli equation for two quasiparticles which move in the Euclidean space with their effective masses holding information about the Lorentzian symmetry of the four-dimensional space-time. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50.  12
    Relativistic Hydrodynamic Interpretation of de Broglie Matter Waves.Yuval Dagan - 2022 - Foundations of Physics 53 (1):1-11.
    We present a classical hydrodynamic analog of free relativistic quantum particles inspired by de Broglie’s pilot wave theory and recent developments in hydrodynamic quantum analogs. The proposed model couples a periodically forced Klein–Gordon equation with a nonrelativistic particle dynamics equation. The coupled equations may represent both quantum particles and classical particles driven by the gradients of locally excited Faraday waves. Exact stationary solutions of the coupled system reveal a highly nonlinear mechanism responsible for the self-propulsion of free (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000