Recently, Bohr’s complementarity principle was assessed in setups involving delayed choices. These works argued in favor of a reformulation of the aforementioned principle so as to account for situations in which a quantum system would simultaneously behave as wave and particle. Here we defend a framework that, supported by well-known experimental results and consistent with the decoherence paradigm, allows us to interpret complementarity in terms of correlations between the system and an informer. Our proposal offers formal definition and operational interpretation (...) for the dual behavior in terms of both nonlocal resources and the couple work-information. Most importantly, our results provide a generalized information-based trade-off for the wave–particle duality and a causal interpretation for delayed-choice experiments. (shrink)
We report on the simultaneous determination of complementary wave and particle aspects of light in a double-slit type “welcher-weg” experiment beyond the limitations set by Bohr’s Principle of Complementarity. Applying classical logic, we verify the presence of sharp interference in the single photon regime, while reliably maintaining the information about the particular pinhole through which each individual photon had passed. This experiment poses interesting questions on the validity of Complementarity in cases where measurements techniques that avoid Heisenberg’s uncertainty principle and (...) quantum entanglement are employed. We further argue that the application of classical concepts of waves and particles as embodied in Complementarity leads to a logical inconsistency in the interpretation of this experiment. (shrink)
I argue that quantum optical experiments that purport to refute Bohr’s principle of complementarity fail in their aim. Some of these experiments try to refute complementarity by refuting the so called particle–wave duality relations, which evolved from the Wootters–Zurek reformulation of BPC. I therefore consider it important for my forgoing arguments to first recall the essential tenets of BPC, and to clearly separate BPC from WZPC, which I will argue is a direct contradiction of BPC. This leads to a (...) need to consider the meaning of particle–wave duality relations and to question their fundamental status. I further argue that particle and wave complementary concepts are on a different footing than other pairs of complementary concepts. (shrink)
A number of papers on wave-particleduality has appeared since the two-prism experiment was performed by Mizobuchi and Ohtake, based on a suggestion by Ghose, Home, and Agarwal. Against this backdrop, the present paper provides further clarification of the key issues involved in the analysis of the two-prism experiment. In the process, we present an overview of wave-particleduality vis-a vis Bohr's complementarity principle.
We review the present status of wave-particleduality of single-photon states in the context of some recent experiments. In particular, Bohr's complementarity principle is critically reexamined. It is explained in detail how this principle is confronted in these experiments and how a contradiction with the notion of “mutual exclusiveness” of classical wave and particle pictures emerges.
This paper starts from a nonlinear fermion field equation of motion with a strongly coupled self-interaction. Nonperturbative quark solutions of the equation of motion are constructed in terms of a Reggeized infinite component free spinor field. Such a field carries a family of strongly interacting unstable compounds lying on a Regge locus in the analytically continued quark spin. Such a quark field is naturally confined and also possesses the property of asymptotic freedom. Furthermore, the particular field self-regularizes the interactions and (...) naturally breaks the chiral invariance of the equation of motion. We show why and how the existence of such a strongly coupled solution and its particle-family, wave duality forces a change in the field equation of motion such that it conserves C, P, T, although its individual interaction terms are of V-A and thus C, P nonconserving type. (shrink)
In 1909, Einstein derived a formula for the mean square energy fluctuation in blackbody radiation. This formula is the sum of a wave term and a particle term. In a key contribution to the 1926 Dreim¨.
If one starts from de Broglie's basic relativistic assumptions, i.e., that all particles have an intrinsic real internal vibration in their rest frame, i.e., hv 0 =m 0 c 2 ; that when they are at any one point in space-time the phase of this vibration cannot depend on the choice of the reference frame, then, one can show (following Mackinnon (1) ) that there exists a nondispersive wave packet of de Broglie's waves which can be assimilated to the nonlinear (...) soliton wave U 0 introduced by him in his double solution model of wave mechanics. (2) Since de Broglie's linear pilot waves can be considered to be real waves propagating as collective motions on a covariant subquantum chaotic “aether,” (3) these new solition waves can be considered as describing the particle's immediate neighborhood, i.e., the aether's reaction to the particle's motion in the stochastic interpretation of quantum mechanics. The existence of such a physical aether (which provides a perfectly causal interpretation of the action-a-distance implied by the Einstein-Podolsky-Rosen experiments) can now be proved by establishing the reality of de Broglie's waves in realizable experiments. (shrink)
The question of the relation between the amplitude of the photon vector potential and its angular frequency is analyzed. The analogy between the relativistic quantum mechanical equations for a massles particle and those governing the photon vector potential appears clearly. Finally, the virtual electromagnetic waves associated with the photon and predicted by de Broglie, Bohr, and other appear naturally as a result of the photon vector potential quantification.
Bell's theorem is believed to establish that the quantum mechanical predictions do not generally admit a causal representation compatible with Einsten's principle of separability, thereby proving incompatibility between quantum mechanics and relativity. This interpretation is contested via two convergent approaches which lead to a sharp distinction between quantum nonseparability and violation of Einstein's theory of relativity.In a first approach we explicate from the quantum mechanical formalism a concept of “reflected dependence.” Founded on this concept, we produce a causal representation of (...) the quantum mechanical probability measure involved in Bell's proof, which is clearly separable in Einstein's sense, i.e., it does not involve supraluminal velocities, and nevertheless is “nonlocal” in Bell's sense. So Bell locality and Einstein separability aredistinct qualifications, and Bell nonlocality (or Bell nonseparability) and Einstein separability arenot incompatible. It is then proved explicitly that with respect to the mentioned representation Bell's derivation does not hold. So Bell's derivation does notestablish thatany Einstein-separable representation is incompatible with quantum mechanics. This first—negative—conclusion is asyntactic fact.The characteristics of the representation and of the reasoning involved in the mentioned counterexample to the usual interpretation of Bell's theorem suggest that the representation used—notwithstanding its ability to bring forth the specified syntactic fact—isnot factually true. Factual truth and syntactic properties also have to be radically distinguished in their turn. So, in a second approach, starting from de Broglie's initial relativistic model of a microsystem, a deeper, factually acceptable representation is constructed. The analyses leading to this second representation show that quantum mechanics does indeed involve basically a certain sort of nonseparability, called here de Broglie-Bohr quantum nonseparability. But the de Broglie-Bohr quantum nonseparability is shown to stem directly from the relativistic character of the considerations which led Louis de Broglie to the fundamental relation p = h/λ,thereby being essentially consistent with relativity. As to Einstein separability, it appears to be a still insufficiently specified conceptof which a future, improved specification, will probably be explicitly harmonizable with the de Broglie-Bohr quantum nonseparability.The ensemble of the conclusions obtained here brings forth a new concept of causality, a concept offolded, zigzag, reflexive causality, with respect to which the type of causality conceived of up to now appears as aparticular case of outstretched, one-way causality. The reflexive causality is found compatible with the results of Aspect's experiment, and it suggests new experiments.Considered globally, the conclusions obtained in the present work might convert the conceptual situation created by Bell's proof into a process of unification of quantum mechanics and relativity. (shrink)
In a quantum mechanical two-slit experiment one can observe a single photon simultaneously as particle (measuring the path) and as wave (measuring the interference pattern) if the path and the interference pattern are measured in the sense of unsharp observables. These theoretical predictions are confirmed experimentally by a photon split-beam experiment using a modified Mach—Zehnder interferometer.
In my 2013 article, “A New Theory of Free Will”, I argued that several serious hypotheses in philosophy and modern physics jointly entail that our reality is structurally identical to a peer-to-peer (P2P) networked computer simulation. The present paper outlines how quantum phenomena emerge naturally from the computational structure of a P2P simulation. §1 explains the P2P Hypothesis. §2 then sketches how the structure of any P2P simulation realizes quantum superposition and wave-function collapse (§2.1.), quantum indeterminacy (§2.2.), wave-particle (...) class='Hi'>duality (§2.3.), and quantum entanglement (§2.4.). Finally, §3 argues that although this is by no means a philosophical proof that our reality is a P2P simulation, it provides ample reasons to investigate the hypothesis further using the methods of computer science, physics, philosophy, and mathematics. (shrink)
We put forward the hypothesis that there exist three basic attitudes towards inconsistencies within world views: (1) The inconsistency is tolerated temporarily and is viewed as an expression of a temporary lack of knowledge due to an incomplete or wrong theory. The resolution of the inconsistency is believed to be inherent to the improvement of the theory. This improvement ultimately resolves the contradiction and therefore we call this attitude the ‘regularising’ attitude; (2) The inconsistency is tolerated and both contradicting elements (...) in the theory are retained. This attitude integrates the inconsistency and leads to a paraconsistent calculus; therefore we will call it the paraconsistent attitude. (3) In the third attitude, both elements of inconsistency are considered to be false and the ‘real situation’ is considered something different that can not be described by the theory constructively. This indicates the incompleteness of the theory, and leads us to a paracomplete calculus; therefore we call it the paracomplete attitude. We illustrate these three attitudes by means of two ‘paradoxical’ situations in quantum mechanics, the wave-particleduality and the situation of non locality. (shrink)
We describe a new class of experiments designed to probe the foundations of quantum mechanics. Using quantum controlling devices, we show how to attain a freedom in temporal ordering of the control and detection of various phenomena. We consider wave–particle duality in the context of quantum-controlled and the entanglement-assisted delayed-choice experiments. Then we discuss a quantum-controlled CHSH experiment and measurement of photon’s transversal position and momentum in a single set-up.
An elementary review of the origin of quantum theory, with focus on the nature of the quantum dynamic variables, reveals the essential wave-likeness of quantum dynamics. The introduction of the concept of point-particle entities resulted from over-use of classical perspectives, and an issue of language: conflation of the concepts of point-particle localization, and discreteness of quantum detections. Keeping in mind the distinction between point-localization and discreteness of quantum exchange, it is clear that there is no experimental evidence for point-localization. A (...) simple review of the origin of quantum theory, and review of several experiments designed to explore "wave-particleduality" and "complementarity" support this perspective. Normal 0 false false false EN-AU X-NONE X-NONE MicrosoftInternetExplorer4. (shrink)
In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantum theory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantum theory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no probabilistic transitions occur. Probabilisitic transitions occur (...) when new "particles" are created as a result of inelastic interactions. All measurements are just special cases of this. This propensiton version of quantum theory, I argue, solves the wave/particle dilemma, is free of conceptual problems that plague orthodox quantum theory, recovers all the empirical success of orthodox quantum theory, and at the same time yields as yet untested predictions that differ from those of orthodox quantum theory. (shrink)
This volume brings together eleven essays by the distinguished philosopher of science, Peter Achinstein. The unifying theme is the nature of the philosophical problems surrounding the postulation of unobservable entities such as light waves, molecules, and electrons. How, if at all, is it possible to confirm scientific hypotheses about "unobservables"? Achinstein examines this question as it arose in actual scientific practice in three nineteenth-century episodes: the debate between particle and wave theorists of light, Maxwell's kinetic theory of gases, and J.J. (...) Thomson's discovery of the electron. The book contains three parts, each devoted to one of these topics, beginning with an essay presenting the historical background of the episode and an introduction to the philosophical issues. There is an illuminating evaluation of various scientific methodologies, including hypothetico-deductivism, inductivism, and the method of independent warrant which combines features of the first two. Achinstein assesses the philosophical validity of both nineteenth-century and modern answers to questions about unobservables, and presents and defends his own solutions. (shrink)
We construct a world model consisting of a matter field living in 4 dimensional spacetime and a gravitational field living in 11 dimensional spacetime. The seven hidden dimensions are compactified within a radius estimated by reproducing the particle–wave characteristics of diffraction experiments. In the presence of matter fields the gravitational field develops localized modes with elementary excitations called gravonons which are induced by the sources. The final world model treated here contains only gravonons and a scalar matter field. The gravonons (...) are localized in the environment of the massive particles which generate them. The solution of the Schrödinger equation for the world model yields matter fields which are localized in the 4 dimensional subspace. The localization has the following properties: There is a chooser mechanism for the selection of the localization site. The chooser selects one site on the basis of minor energy differences and differences in the gravonon structure between the sites, which at present cannot be controlled experimentally and therefore let the choice appear statistical. The changes from one localization site to a neighbouring one take place in a telegraph-signal like manner. The times at which telegraph like jumps occur depend on subtleties of the gravonon structure which at present cannot be controlled experimentally and therefore let the telegraph-like jumps appear statistical. The fact that the dynamical law acts in the configuration space of fields living in 11 dimensional spacetime lets the events observed in 4 dimensional spacetime appear non-local. In this way the phenomenology of CQM is obtained without the need of introducing the process of collapse and a probabilistic interpretation of the wave function. Operators defining observables need not be introduced. All experimental findings are explained in a deterministic way as a consequence of the time development of the wave function in configuration space according to Schrödinger’s equation without the need of introducing a probabilistic interpretation. (shrink)
In quantum mechanics, the wave function of a N-body system is a mathematical function defined in a 3N-dimensional configuration space. We argue that wave function realism implies particle ontology when assuming: (1) the wave function of a N-body system describes N physical entities; (2) each triple of the 3N coordinates of a point in configuration space that relates to one physical entity represents a point in ordinary three-dimensional space. Moreover, the motion of particles is random and discontinuous.
A modified version of Young’s experiment by Shahriar Afshar indirectly reveals the presence of a fully articulated interference pattern prior to the post-selection of a particle in a “which-slit” basis. While this experiment does not constitute a violation of Bohr’s Complementarity Principle as claimed by Afshar, both he and many of his critics incorrectly assume that a commonly used relationship between visibility parameter V and “which-way” parameter K has crucial relevance to his experiment. It is argued here that this relationship (...) does not apply to this experimental situation and that it is wrong to make any use of it in support of claims for or against the bearing of this experiment on Complementarity. (shrink)
Max Born’s philosophic and scientific legacy is related to the orthodox interpretation of quantum mechanics, which is known as the Interpretation of Copenhague. Therefore Born’s statistical interpretation has been considered as defending a positivist philosophy of science. Opposing this idea, this article is intended to face two main questions. The first one deals with the fact that Born’s interpretation of wave function, although it settles indeterminism, does not imply the abandonment of causal explanations of physical phenomena The second one is (...) aimed at showing how is it possible to defend a ‘realistic view’ of scientific labour making use of the notion of ‘invariant observationals’ that leads to the reconciliation of wave and corpuscular theories. (shrink)
Murdoch describes the historical background of the physics from which Bohr's ideas grew; he traces the origins of his idea of complementarity and discusses its meaning and significance. Special emphasis is placed on the contrasting views of Einstein, and the great debate between Bohr and Einstein is thoroughly examined. Bohr's philosophy is revealed as being much more subtle, and more interesting than is generally acknowledged.
The book Heisenberg and the Interpretation of Quantum Mechanics—The Physicist as Philosopher, by Kristian Camilleri is critically reviewed. The work details Heisenberg’s philosophical development from an early positivist commitment towards a later philosophy of language. It is of interest to researchers and graduate students in the history and philosophy of quantum mechanics.
By probability theory the probability space to underlie the set of statistical data described by the squared modulus of a coherent superposition of microscopically distinct (sub)states (CSMDS) is non-Kolmogorovian and, thus, such data are mutually incompatible. For us this fact means that the squared modulus of a CSMDS cannot be unambiguously interpreted as the probability density and quantum mechanics itself, with its current approach to CSMDSs, does not allow a correct statistical interpretation. By the example of a 1D completed scattering (...) and double slit diffraction we develop a new quantum-mechanical approach to CSMDSs, which requires the decomposition of the non-Kolmogorovian probability space associated with the squared modulus of a CSMDS into the sum of Kolmogorovian ones. We adapt to CSMDSs the presented by Khrennikov (Found. Phys. 35(10):1655, 2005) concept of real contexts (complexes of physical conditions) to determine uniquely the properties of quantum ensembles. Namely we treat the context to create a time-dependent CSMDS as a complex one consisting of elementary (sub)contexts to create alternative subprocesses. For example, in the two-slit experiment each slit generates its own elementary context and corresponding subprocess. We show that quantum mechanics, with a new approach to CSMDSs, allows a correct statistical interpretation and becomes compatible with classical physics. (shrink)
The classical wave-particle problem is resolved in accord with Newton's concept of the particle nature of light by associating particle density and flux with the classical wave energy density and flux. Point particles flowing along discrete trajectories yield interference and diffraction patterns, as illustrated by Young's double pinhole interference. Bound particle motion is prescribed by standing waves. Particle motion as a function of time is presented for the case of a “particle in a box.” Initial conditions uniquely determine the (...) subsequent motion. Some discussion regarding quantum theory is preseted. (shrink)
We review the past and present theoretical and experimental situations relating to wave-particle dualism. New tests aimed at enlightening the individual behavior as awave, then as aparticle, of asingle quantum mechanical system in the same experimental run are presented. The related epistemological, philosophical, and historical backgrounds are presented in a twofold exposition taking into account thepositivistic standard Copenhagen interpretation as well as therealist de Broglian point of view.
The old and yet unanswered question of the precise nature of light, although completely and deliberately neglected nowadays, is reexamined by several new methods, both theoretical and experimental. The wave-corpuscle duality of light then appears somewhat different, and a new hypothesis on the process of electromagnetic interaction may be proposed in an attempt to untangle the dilemma and reach a more realistic description.
El legado científico filosófico de Max Born, al estar vinculado a la conocida como interpretación ortodoxa de la mecánica cuántica o interpretación de Copenhague, ha sido entendido desde el marco de una filosofía de la ciencia de corte instrumentalista, considerando su interpretación probabilística de la función de onda como la más clara defensa de una postura indeterminista acausal. Frente a este orden de cosas, este artículo pretende lograr dos objetivos. El primero consiste en mostrar cómo la interpretación de Born, a (...) pesar de instaurar de forma definitiva el indeterminismo en el ámbito de la física elemental, no implica el abandono de una explicación causal de los fenómenos físicos. El segundo trata de defender la posibilidad de reivindicar una interpretación "realista" de la labor científica a partir de la noción de "invariantes observaciones" que Born propone, conciliando el aspecto dual de la realidad elemental en favor de su carácter corpuscular y analizando la aporética noción de "probabilidad objetiva" que su interpretación instaura. Max Born's philosophic and scientific legacy is related to the orthodox interpretation of quantum mechanics, which is known as the Interpretation of Copenhague. Therefore Born's statistical interpretation has been considered as defending a positivist philosophy of science. Opposing this idea, this article is intended to face two main questions. The first one deals with the fact that Born's interpretation of wave function, although it settles indeterminism, does not imply the abandonment of causal explanations of physical phenomena The second one is aimed at showing how is it possible to defend a "realistic view" of scientific labour making use of the notion of "invariant observationals" that leads to the reconciliation of wave and corpuscular theories. (shrink)
The ontology of Bohmian mechanics includes both the universal wave function and particles. Proposals for understanding the physical significance of the wave function in this theory have included the idea of regarding it as a physically-real field in its 3N-dimensional space, as well as the idea of regarding it as a law of nature. Here we introduce and explore a third possibility in which the configuration space wave function is simply eliminated—replaced by a set of single-particle pilot-wave fields living in (...) ordinary physical space. Such a re-formulation of the Bohmian pilot-wave theory can exactly reproduce the statistical predictions of ordinary quantum theory. But this comes at the rather high ontological price of introducing an infinite network of interacting potential fields which influence the particles’ motion through the pilot-wave fields. We thus introduce an alternative approach which aims at achieving empirical adequacy with a more modest ontological complexity, and provide some preliminary evidence for optimism regarding the program of trying to replace the configuration space wave function with a set of fields in ordinary physical space. (shrink)
Mereological nihilism is the philosophical position that there are no items that have parts. If there are no items with parts then the only items that exist are partless fundamental particles, such as the true atoms (also called philosophical atoms) theorized to exist by some ancient philosophers, some contemporary physicists, and some contemporary philosophers. With several novel arguments I show that mereological nihilism is the correct theory of reality. I will also discuss strong similarities that mereological nihilism has with empirical (...) results in quantum physics. And I will discuss how mereological nihilism vindicates a few other theories, such as a very specific theory of philosophical atomism, which I will call quantum abstract atomism. I will show that mereological nihilism also is an interpretation of quantum mechanics that avoids the problems of other interpretations, such as the widely known, metaphysically generated, quantum paradoxes of quantum physics, which ironically are typically accepted as facts about reality. I will also show why it is very surprising that mereological nihilism is not a widely held theory, and not the premier theory in philosophy. (shrink)
The strength and defects of wave mechanics as a theory of chemistry are critically examined. Without the secondary assumption of wave–particle duality, the seminal equation describes matter waves and leaves the concept of point particles undefined. To bring the formalism into line with the theory of special relativity, it is shown to require reformulation in hypercomplex algebra that imparts a new meaning to electron spin as a holistic spinor, eliminating serious current misconceptions in the process. Reformulation in the curved (...) space–time of general relativity requires the recognition of nonlinear effects that invalidate the practice of linear combination of atomic orbitals, ubiquitous in quantum chemistry, and redefines the electron as a nondispersive wave packet, or soliton. (shrink)
The realist interpretations of quantum theory, proposed by de Broglie and by Bohm, are re-examined and their differences, especially concerning many-particle systems and the relativistic regime, are explored. The impact of the recently proposed experiments of Vigier et al. and of Ghose et al. on the debate about the interpretation of quantum mechanics is discussed. An indication of how de Broglie and Bohm would account for these experimental results is given.
This essay touches on a number of topics in philosophy of quantum field theory from the point of view of the LSZ asymptotic approach to scattering theory. First, particle/field duality is seen to be a property of free field theory and not of interacting QFT. Second, it is demonstrated how LSZ side-steps the implications of Haag's theorem. Finally, a recent argument due to Redhead, Malament and Arageorgis against the concept of localized particle states is addressed. Briefly, the argument observes (...) that the Reeh-Schlieder theorem entails that correlations between spacelike separated vacuum expectation values of local field operators are always present, and this, according to the above authors, dictates against the notion of a localized particle state. I claim that this moral is excessive and that a coherent notion of localized particles is given by the LSZ approach. The underlying moral to be drawn from this analysis is that questions concerning the ontology of interacting QFT cannot be appropriately addressed if one restricts oneself to the free theory. (shrink)
Weak/strong duality is usually accompanied by what seems a puzzling ontological feature: the fact that under this kind of duality what is viewed as 'elementary' in one description gets mapped to what is viewed as 'composite' in the dual description. This paper investigates the meaning of this apparent 'particle democracy', as it has been called, by adopting an historical approach. The aim is to clarify the nature of the correspondence between 'dual particles' in the light of an historical (...) analysis of the developments of the idea of weak/strong duality, starting with Dirac's electric-magnetic duality and its successive generalizations in the context of field theory, to arrive at its first extension to string theory. This analysis is then used as evidential basis for discussing the 'elementary/composite' divide and, after taking another historical detour by analysing an instructive analogy case, drawing some conclusions on the particle-democracy issue. (shrink)