In this 1958 book, Professor Hanson turns to an equally important but comparatively neglected subject, the philosophical aspects of research and discovery.
Philosophers of science have given considerable attention to the logic of completed scientific systems. In this 1958 book, Professor Hanson turns to an equally important but comparatively neglected subject, the philosophical aspects of research and discovery. He shows that there is a logical pattern in finding theories as much as in using established theories to make deductions and predictions, and he sets out the features of this pattern with the help of striking examples in the history of science.
Norwood Russell Hanson was one of the most important philosophers of science of the post-war period. Hanson brought Wittgensteinian ordinary language philosophy to bear on the concepts of science, and his treatments of observation, discovery, and the theory-ladenness of scientific facts remain central to the philosophy of science. Additionally, Hanson was one of philosophy’s great personalities, and his sense of humor and charm come through fully in the pages of Perception and Discovery. Perception and Discovery, originally published in 1969, is (...) Hanson’s posthumous textbook in philosophy of science. The book focuses on the indispensable role philosophy plays in scientific thinking. Perception and Discovery features Hanson’s most complete and mature account of theory-laden observation, a discussion of conceptual and logical boundaries, and a detailed treatment of the epistemological features of scientific research and scientific reasoning. This book is of interest to scholars of philosophy of science, particularly those concerned with Hanson’s thought and the development of the discipline in the middle of the 20th century. However, even fifty years after Hanson’s early death, Perception and Discovery still has a great deal to offer all readers interested in science. (shrink)
We have been discussing some of the fundamental features of the classical calculus of probability. The equiprobability of rival events was seen to be a major assumption of the calculus. Moreover, it is an assumption which the pure mathematician need not bother to justify. He need only present his formal system as follows.
History of science and philosophy of science are not logically related: to claim that they are would be either to underestimate or to misunderstand the genetic fallacy. But one risk of inferring that there is no connection at all between the two is the risk that philosophers of science may not know what they are talking about. The philosopher of science who does not know intimately the history of the scientific problem with which he is exercised may be discussing no (...) genuine state of affairs. On the other hand, The historian and philosopher of science are both concerned with the structure of scientific ideas, And these concerns are fused into one when the scientific "argumentation" of the past is the issue. (staff). (shrink)
Originally published in 1963, The Concept of the Positron forms a detailed analysis of quantum theory. Whilst it is not as well known as Professor Hanson's previous book, Patterns of Discovery, the text has many interesting aspects. In many ways it goes further than Hanson's earlier work in approaching the problems of theory competition and the rationality of science, topics that have since become central to the philosophy of science. It is also notable for a rigorous and forthright defence of (...) the Copenhagen Interpretation. Taken together, the ideas presented in this book constitute a first-rate achievement in the history and philosophy of science. This paperback reissue comes with a new preface from Matthew Lund, Assistant Professor, Faculty of Philosophy and Religious Studies at Rowan University. (shrink)
1. The philosophical version of the primary-secondary distinction concerns (a) the 'real' properties of matter, (b) the epistemology of sensation, and (c) a contrast challenged by Berkely as illusory. The scientific version of the primary-secondary distinction concerns (a') the physical properties of matter, (b') a contrast essential within the history of atomism, and (c') a contrast challenged by 20th century microphysics as de facto untenable. 2. The primary-secondary distinction within physics can be interpreted in two ways: a. it can refer (...) to content; e.g. 'Matter has the properties of mass, shape, density... etc. -- it only appears to have the properties of warmth, fragrance, etc.' Or, b. it can refer to form; e.g. 'Whatever properties our best theories accord to primary matter, e.g., electrons, these are by definition primary. All other properties of, e.g., macromatter, are derivative.' Concerning 2.a., this interpretation is simply false when 17th, 18th, or 19th century values for the property-variables are introduced. Concerning 2.b., this either uninformative or misleading. It is uninformative when it constitutes no more than a decision to use the word 'primary' as an umbrella-word for all the properties contemporary micro-physics accords to fundamental material particles, whatever these may be. It is misleading when it turns on an implicit contrast between certain properties particles may be said to have when 'harnessed' to a detector, and certain other properties these particles have when free and unharnessed to any detector. This contrast does not exist. Quantum-theoretic information is always about particles-and-their-detectors-in-combination. Dissolve this combination and you destroy any possible knowledge of the particle. Hence the notion of 'completely objectifiable properties of particles' is in principle unsound. (shrink)
The conceptual excitement of science often seems geared only to work in contemporary physics. Thus, philosophers regularly discuss current cosmology, relativity, or the foundations of microphysics. In these areas one's philosophy is stretched and strained far beyond what our ancestors might have anticipated. Historians of science have also focused attention on past events by remarking their analogies and similarities with perplexities in physics today. But there are statements, hypotheses and theories of the past which are rewarding in themselves, without having (...) to be referred to the agonies which now confound quantum theory and cosmology. Specifically, the First Law of Motion--the "Law of Inertia"--this has everything a logician of science could look for. Understanding the complexities and perplexities of this fundamental mechanical statement is in itself to gain insight into what theoretical physics in general really is. With this in view a study of the law is undertaken. (shrink)
Within the past decade there has grown an acute and highly articulate group of critics of the orthodox interpretation of quantum theory,--the so-called "Copenhagen Interpretation." The writings of people like Bopp, Janossy, and particularly Bohm and Feyerabend, must be taken very seriously indeed. The future of some important discussions in the philosophy and the logic of science rests with these individuals. But they have, in their own writings, occasionally matched the inelegancies of Bohr and Heisenberg with as many inelegancies of (...) their own. The present paper is meant to present a quintet of considerations which may possibly lead to a reassessment of the issues between Bohr, Heisenberg, and their critics, especially Bohm and Feyerabend. (shrink)
1 A PICTURE THEORY OF THEORY-MEANING Perplexities concerning Scientific Theories persist because the usual 'singled valued' philosophical analyses cannot do ...