Results for 'RNA sequencing'

991 found
Order:
  1.  20
    Single cell RNA‐sequencing: A powerful yet still challenging technology to study cellular heterogeneity.May Ke, Badran Elshenawy, Helen Sheldon, Anjali Arora & Francesca M. Buffa - 2022 - Bioessays 44 (11):2200084.
    Almost all biomedical research to date has relied upon mean measurements from cell populations, however it is well established that what it is observed at this macroscopic level can be the result of many interactions of several different single cells. Thus, the observable macroscopic ‘average’ cannot outright be used as representative of the ‘average cell’. Rather, it is the resulting emerging behaviour of the actions and interactions of many different cells. Single‐cell RNA sequencing (scRNA‐Seq) enables the comparison of the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  2.  56
    A parameterization of RNA sequence space.Erik Schultes, Peter T. Hraber & Thomas H. LaBean - 1999 - Complexity 4 (4):61-71.
    Direct download  
     
    Export citation  
     
    Bookmark  
  3.  22
    Creating Lineage Trajectory Maps Via Integration of Single‐Cell RNA‐Sequencing and Lineage Tracing.Russell B. Fletcher, Diya Das & John Ngai - 2018 - Bioessays 40 (8):1800056.
    Mapping the paths that stem and progenitor cells take en route to differentiate and elucidating the underlying molecular controls are key goals in developmental and stem cell biology. However, with population level analyses it is difficult − if not impossible − to define the transition states and lineage trajectory branch points within complex developmental lineages. Single‐cell RNA‐sequencing analysis can discriminate heterogeneity in a population of cells and even identify rare or transient intermediates. In this review, we propose that using (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  40
    The RNA Ontology (RNAO): an ontology for integrating RNA sequence and structure data.Robert Hoehndorf, Colin Batchelor, Thomas Bittner, Michel Dumontier, Karen Eilbeck, Rob Knight, Chris J. Mungall, Jane S. Richardson, Jesse Stombaugh & Eric Westhof - 2011 - Applied ontology 6 (1):53-89.
  5.  22
    RNA assemblages orchestrate complex cellular processes.Finn Cilius Nielsen, Heidi Theil Hansen & Jan Christiansen - 2016 - Bioessays 38 (7):674-681.
    Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by binding to 3′ untranslated (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  6.  44
    Modelling 'evo‐devo' with RNA.Walter Fontana - 2002 - Bioessays 24 (12):1164-1177.
    The folding of RNA sequences into secondary structures is a simple yet biophysically grounded model of a genotype–phenotype map. Its computational and mathematical analysis has uncovered a surprisingly rich statistical structure characterized by shape space covering, neutral networks and plastogenetic congruence. I review these concepts and discuss their evolutionary implications. BioEssays 24:1164–1177, 2002. © 2002 Wiley‐Periodicals, Inc.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  7.  12
    Sequencing Strategies for Fusion Gene Detection.Erin E. Heyer & James Blackburn - 2020 - Bioessays 42 (7):2000016.
    Fusion genes formed by chromosomal rearrangements are common drivers of cancer. Recent innovations in the field of next‐generation sequencing (NGS) have seen a dynamic shift from traditional fusion detection approaches, such as visual characterization by fluorescence, to more precise multiplexed methods. There are many different NGS‐based approaches to fusion gene detection and deciding on the most appropriate method can be difficult. Beyond the experimental approach, consideration needs to be given to factors such as the ease of implementation, processing time, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  11
    RNA at DNA Double‐Strand Breaks: The Challenge of Dealing with DNA:RNA Hybrids.Judit Domingo-Prim, Franziska Bonath & Neus Visa - 2020 - Bioessays 42 (5):1900225.
    RNA polymerase II is recruited to DNA double‐strand breaks (DSBs), transcribes the sequences that flank the break and produces a novel RNA type that has been termed damage‐induced long non‐coding RNA (dilncRNA). DilncRNAs can be processed into short, miRNA‐like molecules or degraded by different ribonucleases. They can also form double‐stranded RNAs or DNA:RNA hybrids. The DNA:RNA hybrids formed at DSBs contribute to the recruitment of repair factors during the early steps of homologous recombination (HR) and, in this way, contribute to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  21
    On the Verge of Life: Distribution of Nucleotide Sequences in Viral RNAs.Mykola Husev & Andrij Rovenchak - forthcoming - Biosemiotics:1-17.
    The aim of the study is to analyze viruses using parameters obtained from distributions of nucleotide sequences in the viral RNA. Seeking for the input data homogeneity, we analyze single-stranded RNA viruses only. Two approaches are used to obtain the nucleotide sequences; In the first one, chunks of equal length are considered. In the second approach, the whole RNA genome is divided into parts by adenine or the most frequent nucleotide as a “space”. Rank–frequency distributions are studied in both cases. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  10.  18
    RNA editing: Exploring one mode with apolipoprotein B mRNA.Lawrence Chan - 1993 - Bioessays 15 (1):33-41.
    RNA editing is a newly described genetic phenomenon. It encompasses widely different molecular mechanisms and events. According to the specific RNA modification, RNA editing can be broadly classified into six major types. Type II RNA editing occurs in plants and mammals; it consists predominantly in cytidine to uridine conversions resulting from deamination/transamination or transglycosylation, although in plants other mechanisms have not been excluded. Apolipoprotein B mRNA editing is the only well‐documented editing phenomenon in mammals. It is an intranuclear event that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  41
    An RNA Phage Lab: MS2 in Walter Fiers’ Laboratory of Molecular Biology in Ghent, from Genetic Code to Gene and Genome, 1963–1976. [REVIEW]Jérôme Pierrel - 2012 - Journal of the History of Biology 45 (1):109 - 138.
    The importance of viruses as model organisms is well-established in molecular biology and Max Delbrück's phage group set standards in the DNA phage field. In this paper, I argue that RNA phages, discovered in the 1960s, were also instrumental in the making of molecular biology. As part of experimental systems, RNA phages stood for messenger RNA (mRNA), genes and genome. RNA was thought to mediate information transfers between DNA and proteins. Furthermore, RNA was more manageable at the bench than DNA (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  8
    RNA structure: Merging chemistry and genomics for a holistic perspective.Miles Kubota, Dalen Chan & Robert C. Spitale - 2015 - Bioessays 37 (10):1129-1138.
    The advent of deep sequencing technology has unexpectedly advanced our structural understanding of molecules composed of nucleic acids. A significant amount of progress has been made recently extrapolating the chemical methods to probe RNA structure into sequencing methods. Herein we review some of the canonical methods to analyze RNA structure, and then we outline how these have been used to probe the structure of many RNAs in parallel. The key is the transformation of structural biology problems into (...) problems, whereby sequencing power can be interpreted to understand nucleic acid proximity, nucleic acid conformation, or nucleic acid‐protein interactions. Utilizing such technologies in this way has the promise to provide novel structural insights into the mechanisms that control normal cellular physiology and provide insight into how structure could be perturbed in disease. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  44
    RNA editing: a driving force for adaptive evolution?Willemijn M. Gommans, Sean P. Mullen & Stefan Maas - 2009 - Bioessays 31 (10):1137-1145.
    Genetic variability is considered a key to the evolvability of species. The conversion of an adenosine (A) to inosine (I) in primary RNA transcripts can result in an amino acid change in the encoded protein, a change in secondary structure of the RNA, creation or destruction of a splice consensus site, or otherwise alter RNA fate. Substantial transcriptome and proteome variability is generated by A‐to‐I RNA editing through site‐selective post‐transcriptional recoding of single nucleotides. We posit that this epigenetic source of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  14.  18
    Promiscuity in protein‐RNA interactions: Conformational ensembles facilitate molecular recognition in the spliceosome.David D. Boehr - 2012 - Bioessays 34 (3):174-180.
    Here I discuss findings that suggest a universal mechanism for proteins (and RNA) to recognize and interact with various binding partners by selectively binding to different conformations that pre‐exist in the free protein's conformational ensemble. The tandem RNA recognition motif domains of splicing factor U2AF65 fluctuate in solution between a predominately closed conformation in which the RNA binding site of one of the domains is blocked, and a lowly populated open conformation in which both RNA binding pockets are accessible. RNA (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  16
    Discontinuous RNA synthesis through trans‐splicing.Richard Braun - 1986 - Bioessays 5 (5):223-227.
    In eukaryotic cells intron sequences are usually spliced out with a high degree of precision from heterogenous nuclear RNA (hnRNA) to give functional mRNA with exons in their right order. Provided with the right substrates, cell extracts can achieve the same. With exotic substrates, on the other hand, the same extracts can cut exons from one RNA and join them to exons from another RNA, a process termed trans‐splicing. In vivo, RNA trans‐splicing could lead to faulty, but also to novel (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  13
    CLIPing Staufen to secondary RNA structures: Size and location matter!Sandra M. Fernández Moya & Michael A. Kiebler - 2015 - Bioessays 37 (10):1062-1066.
    hiCLIP (RNA hybrid and individual‐nucleotide resolution ultraviolet cross‐linking and immunoprecipitation), is a novel technique developed by Sugimoto et al. (2015). Here, the use of different adaptors permits a controlled ligation of the two strands of a RNA duplex allowing the identification of each arm in the duplex upon sequencing. The authors chose a notoriously difficult to study double‐stranded RNA‐binding protein (dsRBP) termed Staufen1, a mammalian homolog of Drosophila Staufen involved in mRNA localization and translational control. Using hiCLIP, they discovered (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17.  13
    Deciphering the protein‐RNA recognition code: Combining large‐scale quantitative methods with structural biology.Janosch Hennig & Michael Sattler - 2015 - Bioessays 37 (8):899-908.
    RNA binding proteins (RBPs) are key factors for the regulation of gene expression by binding to cis elements, i.e. short sequence motifs in RNAs. Recent studies demonstrate that cooperative binding of multiple RBPs is important for the sequence‐specific recognition of RNA and thereby enables the regulation of diverse biological activities by a limited set of RBPs. Cross‐linking immuno‐precipitation (CLIP) and other recently developed high‐throughput methods provide comprehensive, genome‐wide maps of protein‐RNA interactions in the cell. Structural biology gives detailed insights into (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18. The Non-Coding RNA Ontology : a comprehensive resource for the unification of non-coding RNA biology.Huang Jingshan, Eilbeck Karen, Barry Smith, A. Blake Judith, Dou Dejing, Huang Weili, A. Natale Darren, Ruttenberg Alan, Huan Jun & T. Zimmermann Michael - 2016 - Journal of Biomedical Semantics 7 (1).
    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  19.  17
    Graph-Based Analysis of RNA Secondary Structure Similarity Comparison.Lina Yang, Yang Liu, Xiaochun Hu, Patrick Wang, Xichun Li & Jun Wu - 2021 - Complexity 2021:1-15.
    In organisms, ribonucleic acid plays an essential role. Its function is being discovered more and more. Due to the conserved nature of RNA sequences, its function mainly depends on the RNA secondary structure. The discovery of an approximate relationship between two RNA secondary structures helps to understand their functional relationship better. It is an important and urgent task to explore structural similarities from the graphical representation of RNA secondary structures. In this paper, a novel graphical analysis method based on the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  4
    Branched RNA.Mary Edmonds - 1987 - Bioessays 6 (5):212-216.
    The only RNA molecules known to be branched are circular structures with tails known as lariats that arise during nuclear pre‐mRNA splicing. Lariats accumulate within a large multicomponent particle called a spliceosome that forms upon the addition of unspliced mRNA to nuclear extracts. Recently an RNA molecule has been observed to catalyze branch formation. In this case a single intron of a yeast mitochondrial pre‐mRNA participates in a self‐splicing reaction that results in the accumulation of branched lariats that are processed (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  4
    RNAs templating chromatin structure for dosage compensation in animals.Anton Wutz - 2003 - Bioessays 25 (5):434-442.
    The role of RNA as a messenger in the expression of the genome has been long appreciated, but its functions in regulating chromatin and chromosome structure are no less interesting. Recent results have shown that small RNAs guide chromatin‐modifying complexes to chromosomal regions in a sequence‐specific manner to elicit transcriptional repression. However, sequence‐specific targeting by means of base pairing seems to be only one mechanism by which RNA is employed for epigenetic regulation. The focus of this review is on large (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  56
    Non‐coding RNAs: Meet thy masters.Fabrício F. Costa - 2010 - Bioessays 32 (7):599-608.
    New DNA sequencing technologies have provided novel insights into eukaryotic genomes, epigenomes, and the transcriptome, including the identification of new non‐coding RNA (ncRNA) classes such as promoter‐associated RNAs and long RNAs. Moreover, it is now clear that up to 90% of eukaryotic genomes are transcribed, generating an extraordinary range of RNAs with no coding capacity. Taken together, these new discoveries are modifying the status quo in genomic science by demonstrating that the eukaryotic gene pool is divided into two distinct (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23.  10
    An RNA Phage Lab: MS2 in Walter Fiers’ Laboratory of Molecular Biology in Ghent, from Genetic Code to Gene and Genome, 1963–1976. [REVIEW]Jérôme Pierrel - 2012 - Journal of the History of Biology 45 (1):109-138.
    The importance of viruses as model organisms is well-established in molecular biology and Max Delbrück’s phage group set standards in the DNA phage field. In this paper, I argue that RNA phages, discovered in the 1960s, were also instrumental in the making of molecular biology. As part of experimental systems, RNA phages stood for messenger RNA, genes and genome. RNA was thought to mediate information transfers between DNA and proteins. Furthermore, RNA was more manageable at the bench than DNA due (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24.  13
    Flavors of Flaviviral RNA Structure: towards an Integrated View of RNA Function from Translation through Encapsidation.Kenneth Hodge, Maliwan Kamkaew, Trairak Pisitkun & Sarin Chimnaronk - 2019 - Bioessays 41 (8):1900003.
    For many viruses, RNA is the holder of genetic information and serves as the template for both replication and translation. While host and viral proteins play important roles in viral decision‐making, the extent to which viral RNA (vRNA) actively participates in translation and replication might be surprising. Here, the focus is on flaviviruses, which include common human scourges such as dengue, West Nile, and Zika viruses, from an RNA‐centric viewpoint. In reviewing more recent findings, an attempt is made to fill (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25.  10
    More than a bystander: RNAs specify multifaceted behaviors of liquid‐liquid phase‐separated biomolecular condensates.Hui Zheng & Hong Zhang - 2024 - Bioessays 46 (3):2300203.
    Cells contain a myriad of membraneless ribonucleoprotein (RNP) condensates with distinct compositions of proteins and RNAs. RNP condensates participate in different cellular activities, including RNA storage, mRNA translation or decay, stress response, etc. RNP condensates are assembled via liquid‐liquid phase separation (LLPS) driven by multivalent interactions. Transition of RNP condensates into bodies with abnormal material properties, such as solid‐like amyloid structures, is associated with the pathogenesis of various diseases. In this review, we focus on how RNAs regulate multiple aspects of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  4
    What the papers say: Engineering a plant RNA virus for expression of foreign genetic sequences.Donald L. Nuss - 1986 - Bioessays 4 (3):133-134.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  24
    The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal.Michael Doyle, Lukas Badertscher, Lukasz Jaskiewicz, Stephan Güttinger, Sabine Jurado, Tabea Hugenschmidt, Ulrike Kutay & Witold Filipowicz - unknown
    Dicer is a key player in microRNA (miRNA) and RNA interference (RNAi) pathways, processing miRNA precursors and doublestranded RNA into ~21-nt-long products ultimately triggering sequence-dependent gene silencing. Although processing of substrates in vertebrate cells occurs in the cytoplasm, there is growing evidence suggesting Dicer is also present and functional in the nucleus. To address this possibility, we searched for a nuclear localization signal (NLS) in human Dicer and identified its C-terminal double-stranded RNA binding domain (dsRBD) as harboring NLS activity. We (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  28.  15
    Are non‐protein coding RNAs junk or treasure?Nils G. Walter - 2024 - Bioessays 46 (4):2300201.
    The human genome project's lasting legacies are the emerging insights into human physiology and disease, and the ascendance of biology as the dominant science of the 21st century. Sequencing revealed that >90% of the human genome is not coding for proteins, as originally thought, but rather is overwhelmingly transcribed into non‐protein coding, or non‐coding, RNAs (ncRNAs). This discovery initially led to the hypothesis that most genomic DNA is “junk”, a term still championed by some geneticists and evolutionary biologists. In (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  29.  16
    Nonsense‐mediated RNA decay: A molecular system micromanaging individual gene activities and suppressing genomic noise.Claudio R. Alonso - 2005 - Bioessays 27 (5):463-466.
    Nonsense‐mediated RNA decay (NMD) is an evolutionary conserved system of RNA surveillance that detects and degrades RNA transcripts containing nonsense mutations. Given that these mutations arise at a relatively low frequency, are there any as yet unknown substrates of NMD in a wild‐type cell? With this question in mind, Mendell et al.1 have used a microarray assay to identify those human genes under NMD regulation. Their results show that, in human cells, NMD regulates hundreds of physiologic transcripts and not just (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  30.  10
    Endogenous inhibitors of RNA interference in Caenorhabditis elegans.Lisa Timmons - 2004 - Bioessays 26 (7):715-718.
    In eukaryotes, double‐stranded RNAs (dsRNAs) or short, interfering dsRNAs (siRNAs) can reduce the accumulation of a sequence‐related mRNA, often resulting in a loss‐of‐function phenotype—a process termed RNA interference (RNAi). Unfortunately, some mRNAs are resistant to the effects of dsRNA. Experiments designed to unravel RNAi mechanisms in Caenorhabditis elegans have led to the identification of two worm proteins, RRF‐31,2 and, now, ERI‐1,3 that can inhibit RNAi responses. Animals defective in either protein can display enhanced RNAi phenotypes for mRNAs that were previously (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  45
    Genome evolution is driven by gene expression-generated biophysical constraints through RNA-directed genetic variation: A hypothesis.Didier Auboeuf - 2017 - Bioessays 39 (10):1700069.
    The biogenesis of RNAs and proteins is a threat to the cell. Indeed, the act of transcription and nascent RNAs challenge DNA stability. Both RNAs and nascent proteins can also initiate the formation of toxic aggregates because of their physicochemical properties. In reviewing the literature, I show that co-transcriptional and co-translational biophysical constraints can trigger DNA instability that in turn increases the likelihood that sequences that alleviate the constraints emerge over evolutionary time. These directed genetic variations rely on the biogenesis (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  8
    Processing and termination of RNA polymerase I transcripts.Ronald H. Reeder, Paul Labhart & Brian McStay - 1987 - Bioessays 6 (3):108-112.
    Electron micrographs of active ribosomal genes from many species show a similar picture in which gene regions covered with nascent transcripts alternate with apparently non‐transcribed spacers. Since the gradients of visible nascent transcripts stop near the 3′ end of the 28S sequence it has often been assumed that transcription by RNA polymerase I also terminates at that point. Recent biochemical studies have shown however, that transcription continues far beyond the 3′ end of the 28S and in some species continues across (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  33. A domain ontology for the non-coding RNA field.Jingshan Huang, Karen Eilbeck, Judith A. Blake, Dejing Dou, Darren A. Natale, Alan Ruttenberg, Barry Smith, Michael T. Zimmermann, Guoqian Jiang & Yu Lin - 2015 - In Huang Jingshan, Eilbeck Karen, Blake Judith A., Dou Dejing, Natale Darren A., Ruttenberg Alan, Smith Barry, Zimmermann Michael T., Jiang Guoqian & Lin Yu (eds.), IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM 2015). pp. 621-624.
    Identification of non-coding RNAs (ncRNAs) has been significantly enhanced due to the rapid advancement in sequencing technologies. On the other hand, semantic annotation of ncRNA data lag behind their identification, and there is a great need to effectively integrate discovery from relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a precisely defined ncRNA controlled vocabulary, which can fill a specific and highly needed niche in unification of ncRNA biology.
    Direct download  
     
    Export citation  
     
    Bookmark  
  34.  8
    The end of the message: 3'– end processing leading to polyadenylated messenger RNA.Elmar Wahle - 1992 - Bioessays 14 (2):113-118.
    Almost all messenger RNAs carry a polyadenylate tail that is added in a post‐transcriptional reaction. In the nuclei of animal cells, the 3'‐end of the RNA is formed by endonucleolytic cleavage of the primary transcript at the site of poly (A) addition, followed by the polymerisation of the tail. The reaction depends on specific RNA sequences upstream as well as downstream of the polyadenylation site. Cleavage and polyadenylation can be uncoupled in vitro. Polyadenylation is carried out by poly(A) polymerase with (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35. DNA Habitats and Their RNA Inhabitants.Guenther Witzany (ed.) - 2015
    Most molecular biological concepts derive from physical chemical assumptions about the genetic code that are basically more than 40 years old. Additionally, systems biology, another quantitative approach, investigates the sum of interrelations to obtain a more holistic picture of nucleotide sequence order. Recent empirical data on genetic code compositions and rearrangements by mobile genetic elements and non-coding RNAs, together with results of virus research and their role in evolution, does not really fit into these concepts and compel a re-examination. In (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  36.  22
    Viral suppression of RNA silencing: 2b wins the Golden Fleece by defeating Argonaute.Virginia Ruiz-Ferrer & Olivier Voinnet - 2007 - Bioessays 29 (4):319-323.
    In plants, virus‐derived double‐stranded RNA is processed into small interfering (si)RNAs by RNAse III‐type enzymes. siRNAs are believed to guide an RNA‐induced silencing complex (RISC) to promote sequence‐specific degradation (or ‘slicing’) of homologous viral transcripts. This process, called RNA silencing, likely involves Argonaute (AGO) proteins that are known components of plant and animal RISCs. Plant viruses commonly counteract the silencing immune response by producing suppressor proteins, but the molecular basis of their action has remained largely unclear. A recent study by (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  8
    A Textual Deconstruction of the RNA World.David Haig - forthcoming - Biosemiotics:1-6.
    RNAs can do many things. They can store information, act in the world, and respond to the world. Because of these capabilities biologists have proposed a primordial ‘RNA world’ in which RNA, rather than DNA, performed the central role of replicator and repository of adaptive information. Deacon dismisses this hypothesis because replication is not about anything and because the structure of replicating molecules cannot contain information about the environment. I dispute both claims. An RNA and its opposite-sense complement represent each (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38.  33
    Evolution and RNA Relics. A Systems Biology View.Jacques Demongeot, Nicolas Glade & Andrés Moreira - 2008 - Acta Biotheoretica 56 (1-2):5-25.
    The genetic code has evolved from its initial non-degenerate wobble version until reaching its present state of degeneracy. By using the stereochemical hypothesis, we revisit the problem of codon assignations to the synonymy classes of amino-acids. We obtain these classes with a simple classifier based on physico-chemical properties of nucleic bases, like hydrophobicity and molecular weight. Then we propose simple RNA ring structures that present, overlap included, one and only one codon by synonymy class as solutions of a combinatory variational (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  39.  6
    A Kuhnian revolution in molecular biology: Most genes in complex organisms express regulatory RNAs.John S. Mattick - 2023 - Bioessays 45 (9):2300080.
    Thomas Kuhn described the progress of science as comprising occasional paradigm shifts separated by interludes of ‘normal science’. The paradigm that has held sway since the inception of molecular biology is that genes (mainly) encode proteins. In parallel, theoreticians posited that mutation is random, inferred that most of the genome in complex organisms is non‐functional, and asserted that somatic information is not communicated to the germline. However, many anomalies appeared, particularly in plants and animals: the strange genetic phenomena of paramutation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  40.  15
    Processing of snoRNAs as a new source of regulatory non‐coding RNAs.Marina Falaleeva & Stefan Stamm - 2013 - Bioessays 35 (1):46-54.
    Recent experimental evidence suggests that most of the genome is transcribed into non‐coding RNAs. The initial transcripts undergo further processing generating shorter, metabolically stable RNAs with diverse functions. Small nucleolar RNAs (snoRNAs) are non‐coding RNAs that modify rRNAs, tRNAs, and snRNAs that were considered stable. We review evidence that snoRNAs undergo further processing. High‐throughput sequencing and RNase protection experiments showed widespread expression of snoRNA fragments, known as snoRNA‐derived RNAs (sdRNAs). Some sdRNAs resemble miRNAs, these can associate with argonaute proteins (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  41.  16
    Non‐coding RNAs in Kawasaki disease: Molecular mechanisms and clinical implications.Fuqing Yang, Xiang Ao, Lin Ding, Lin Ye, Xuejuan Zhang, Lanting Yang, Zhonghao Zhao & Jianxun Wang - 2022 - Bioessays 44 (6):2100256.
    Kawasaki disease (KD) is an acute self‐limiting vasculitis with coronary complications, usually occurring in children. The incidence of KD in children is increasing year by year, mainly in East Asian countries, but relatively stably in Europe and America. Although studies on KD have been reported, the pathogenesis of KD is unknown. With the development of high‐throughput sequencing technology, growing number of regulatory noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) have been identified to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  16
    Simple sequences and the expanding genome.John M. Hancock - 1996 - Bioessays 18 (5):421-425.
    Recent analysis of the contribution of replication slippage to genome evolution shows that it has played a significant role in all species from eubacteria to humans. The overall level of repetition in genomes is related to genome size and to the degree of repetition that can be measured within individual ribosomai RNA genes, suggesting that the entire genome accepts simple sequences in a concerted manner when its size increases. Although coding sequences accept simple sequences much less readily than non‐coding sequences, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  19
    Coronavirus leader‐RNA‐primed transcription: An alternative mechanism to RNA splicing.Michael M. C. Lai - 1986 - Bioessays 5 (6):257-260.
    Many viral and cellular mRNA species contain a leader sequence derived from a distant upstream site on the same gene by a process of RNA splicing. This process usually involves either nuclear functions or self‐splicing of RNA molecules. Coronavirus, a cytoplasmic RNA virus, unfolds yet another mechanism of joining RNA, which involves the use of a free leader RNA molecule. This molecule is synthesized and dissociates from the template RNA, and subsequently reassociates with the template RNA at down‐stream initiation sites (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  24
    The Uroboros Theory of Life’s Origin: 22-Nucleotide Theoretical Minimal RNA Rings Reflect Evolution of Genetic Code and tRNA-rRNA Translation Machineries.Jacques Demongeot & Hervé Seligmann - 2019 - Acta Biotheoretica 67 (4):273-297.
    Theoretical minimal RNA rings attempt to mimick life’s primitive RNAs. At most 25 22-nucleotide-long RNA rings code once for each biotic amino acid, a start and a stop codon and form a stem-loop hairpin, resembling consensus tRNAs. We calculated, for each RNA ring’s 22 potential splicing positions, similarities of predicted secondary structures with tRNA vs. rRNA secondary structures. Assuming rRNAs partly derived from tRNA accretions, we predict positive associations between relative secondary structure similarities with rRNAs over tRNAs and genetic code (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  45.  11
    Gene silencing in non‐model insects: Overcoming hurdles using symbiotic bacteria for trauma‐free sustainable delivery of RNA interference.Miranda Whitten & Paul Dyson - 2017 - Bioessays 39 (3).
    Insight into animal biology and development provided by classical genetic analysis of the model organism Drosophila melanogaster was an incentive to develop advanced genetic tools for this insect. But genetic systems for the over one million other known insect species are largely undeveloped. With increasing information about insect genomes resulting from next generation sequencing, RNA interference is now the method of choice for reverse genetics, although it is constrained by the means of delivery of interfering RNA. A recent advance (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  6
    The selfish environment meets the selfish gene: Coevolution and inheritance of RNA and DNA pools.Anthony P. Monaco - 2022 - Bioessays 44 (2):2100239.
    Throughout evolution, there has been interaction and exchange between RNA pools in the environment, and DNA and RNA pools of eukaryotic organisms. Metagenomic and metatranscriptomic sequencing of invertebrate hosts and their microbiota has revealed a rich evolutionary history of RNA virus shuttling between species. Horizontal transfer adapted the RNA pool for successful future interactions which lead to zoonotic transmission and detrimental RNA viral pandemics like SARS‐CoV2. In eukaryotes, noncoding RNA (ncRNA) is an established mechanism derived from prokaryotes to defend (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  17
    Applications of Cas9 as an RNA‐programmed RNA‐binding protein.David A. Nelles, Mark Y. Fang, Stefan Aigner & Gene W. Yeo - 2015 - Bioessays 37 (7):732-739.
    The Streptococcus pyogenes CRISPR‐Cas system has gained widespread application as a genome editing and gene regulation tool as simultaneous cellular delivery of the Cas9 protein and guide RNAs enables recognition of specific DNA sequences. The recent discovery that Cas9 can also bind and cleave RNA in an RNA‐programmable manner indicates the potential utility of this system as a universal nucleic acid‐recognition technology. RNA‐targeted Cas9 (RCas9) could allow identification and manipulation of RNA substrates in live cells, empowering the study of cellular (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  48.  21
    Evidence of Aberrant Immune Response by Endogenous Double‐Stranded RNAs: Attack from Within.Sujin Kim, Yongsuk Ku, Jayoung Ku & Yoosik Kim - 2019 - Bioessays 41 (7):1900023.
    Many innate immune response proteins recognize foreign nucleic acids from invading pathogens to initiate antiviral signaling. These proteins mostly rely on structural characteristics of the nucleic acids rather than their specific sequences to distinguish self and nonself. One feature utilized by RNA sensors is the extended stretch of double‐stranded RNA (dsRNA) base pairs. However, the criteria for recognizing nonself dsRNAs are rather lenient, and hairpin structure of self‐RNAs can also trigger an immune response. Consequently, aberrant activation of RNA sensors has (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  49.  32
    Epigenetics and the brain: Transcriptome sequencing reveals new depths to genomic imprinting.Gavin Kelsey - 2011 - Bioessays 33 (5):362-367.
    Transcriptome sequencing has identified more than a thousand potentially imprinted genes in the mouse brain. This comes as a revelation to someone who cut his teeth on the identification of imprinted genes when only a handful was known. Genomic imprinting, an epigenetic mechanism that determines expression of alleles according to sex of transmitting parent, was discovered over 25 years ago in mice but remains an enigmatic phenomenon. Why do these genes disobey the normal Mendelian logic of inheritance, do they (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  50.  9
    The human Alu SINE sequences ‐ is there a role for selection in their evolution?John F. Y. Brookfield - 1994 - Bioessays 16 (11):793-795.
    The Alu sequence is a SINE (Short INterspersed Element) that is abundant in the human genome. A new analysis(1) reveals an unexpected conservation of some bases in the DNA sequence of the element. The bases involved include those forming an RNA polymerase III promoter. An unresolved question is whether this conservation results from selection for transposability. This, in turn, is related to the larger question of the evolutionary relationship between members of the Alu sequence family.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 991