Results for 'Kochen- Specker theorem. relativity, entanglement, model and reality, Bohmian interpretation of quantum mechanics, axiom of choice'

988 found
Order:
  1. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 2).Vasil Penchev - 2013 - Philosophical Alternatives 22 (3):74-83.
    The text is a continuation of the article of the same name published in the previous issue of Philosophical Alternatives. The philosophical interpretations of the Kochen- Specker theorem (1967) are considered. Einstein's principle regarding the,consubstantiality of inertia and gravity" (1918) allows of a parallel between descriptions of a physical micro-entity in relation to the macro-apparatus on the one hand, and of physical macro-entities in relation to the astronomical mega-entities on the other. The Bohmian interpretation ( 1952) (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  2. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – KochenSpecker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  4. Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
    Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5.  98
    Interpreting the Modal KochenSpecker theorem: Possibility and many worlds in quantum mechanics.Christian de Ronde, Hector Freytes & Graciela Domenech - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 45:11-18.
    In this paper we attempt to physically interpret the Modal KochenSpecker theorem. In order to do so, we analyze the features of the possible properties of quantum systems arising from the elements in an orthomodular lattice and distinguish the use of “possibility” in the classical and quantum formalisms. Taking into account the modal and many worlds non-collapse interpretation of the projection postulate, we discuss how the MKS theorem rules the constraints to actualization, and thus, the (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  6.  14
    Spin and Contextuality in Extended de Broglie-Bohm-Bell Quantum Mechanics.Jeroen C. Vink - 2022 - Foundations of Physics 52 (5):1-27.
    This paper introduces an extension of the de Broglie-Bohm-Bell formulation of quantum mechanics, which includes intrinsic particle degrees of freedom, such as spin, as elements of reality. To evade constraints from the Kochen-Specker theorem the discrete spin values refer to a specific basis – i.e., a single spin vector orientation for each particle; these spin orientations are, however, not predetermined, but dynamic and guided by the wave function of the system, which is conditional on the realized location (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Two deductions: (1) from the totality to quantum information conservation; (2) from the latter to dark matter and dark energy.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (28):1-47.
    The paper discusses the origin of dark matter and dark energy from the concepts of time and the totality in the final analysis. Though both seem to be rather philosophical, nonetheless they are postulated axiomatically and interpreted physically, and the corresponding philosophical transcendentalism serves heuristically. The exposition of the article means to outline the “forest for the trees”, however, in an absolutely rigorous mathematical way, which to be explicated in detail in a future paper. The “two deductions” are two successive (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  52
    Foundations of Quantum Mechanics.Emily Adlam - 2021 - Cambridge University Press.
    Quantum mechanics is an extraordinarily successful scientific theory. But more than 100 years after it was first introduced, the interpretation of the theory remains controversial. This Element introduces some of the most puzzling questions at the foundations of quantum mechanics and provides an up-to-date and forward-looking survey of the most prominent ways in which physicists and philosophers of physics have attempted to resolve them. Topics covered include nonlocality, contextuality, the reality of the wavefunction and the measurement problem. (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  9. Is Mass at Rest One and the Same? A Philosophical Comment: on the Quantum Information Theory of Mass in General Relativity and the Standard Model.Vasil Penchev - 2014 - Journal of SibFU. Humanities and Social Sciences 7 (4):704-720.
    The way, in which quantum information can unify quantum mechanics (and therefore the standard model) and general relativity, is investigated. Quantum information is defined as the generalization of the concept of information as to the choice among infinite sets of alternatives. Relevantly, the axiom of choice is necessary in general. The unit of quantum information, a qubit is interpreted as a relevant elementary choice among an infinite set of alternatives generalizing that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Representation and Reality by Language: How to make a home quantum computer?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  11. Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the KochenSpecker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  12. Independently Motivating the Kochen—Dieks Modal Interpretation of Quantum Mechanics.Rob Clifton - 1995 - British Journal for the Philosophy of Science 46 (1):33-57.
    The distinguishing feature of ‘modal’ interpretations of quantum mechanics is their abandonment of the orthodox eigenstate–eigenvalue rule, which says that an observable possesses a definite value if and only if the system is in an eigenstate of that observable. Kochen's and Dieks' new biorthogonal decomposition rule for picking out which observables have definite values is designed specifically to overcome the chief problem generated by orthodoxy's rule, the measurement problem, while avoiding the no-hidden-variable theorems. Otherwise, their new rule seems (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  13.  14
    Kochen-Specker Theorem, Physical Invariance and Quantum Individuality.Christian de Ronde & Cesar Massri - unknown
    In this paper we attempt to discuss what has Kochen-Specker theorem to say about physical invariance and quantum individuality. In particular, we will discuss the impossibility of making reference to objective physical properties within the orthodox formalism of quantum mechanics. Through an analysis of the meaning of physical invariance and quantum contextuality we will derive a Corollary to KS theorem that proves that a vector in Hilbert space cannot be interpreted coherently as an object possessing (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  14. Two no-go theorems for modal interpretations of quantum mechanics.E. P. - 1999 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 30 (3):403-431.
    Modal interpretations take quantum mechanics as a theory which assigns at all times definite values to magnitudes of quantum systems. In the case of single systems, modal interpretations manage to do so without falling prey to the Kochen and Specker no-go theorem, because they assign values only to a limited set of magnitudes. In this paper I present two further no-go theorems which prove that two modal interpretations become nevertheless problematic when applied to more than one (...)
     
    Export citation  
     
    Bookmark  
  15.  36
    Lagrangian Description for Particle Interpretations of Quantum Mechanics: Entangled Many-Particle Case.Roderick I. Sutherland - 2017 - Foundations of Physics 47 (2):174-207.
    A Lagrangian formulation is constructed for particle interpretations of quantum mechanics, a well-known example of such an interpretation being the Bohm model. The advantages of such a description are that the equations for particle motion, field evolution and conservation laws can all be deduced from a single Lagrangian density expression. The formalism presented is Lorentz invariant. This paper follows on from a previous one which was limited to the single-particle case. The present paper treats the more general (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  16. Quantum mechanics: From realism to intuitionism.Ronnie Hermens - unknown
    The interpretation of quantum mechanics has been a problem since its founding days. A large contribution to the discussion of possible interpretations of quantum mechanics is given by the so-called impossibility proofs for hidden variable models; models that allow a realist interpretation. In this thesis some of these proofs are discussed, like von Neumann’s Theorem, the Kochen-Specker Theorem and the Bell-inequalities. Some more recent developments are also investigated, like Meyer’s nullification of the Kochen- (...) Theorem, the MKC-models and Conway and Kochen’s Free Will Theorem. This last one is taken to suggest that the problems that arise for certain interpretations of quantum mechanics are not limited to realist interpretations only, but also affect certain instrumentalist interpretations. It is argued that one may arrive at a more satisfying interpretation of quantum mechanics if one adopts a logic that seems more compatible with the instrumentalist viewpoint namely, intuitionistic logic. The motivations for adopting this form of logic rather than classical logic or quantum logic are linked to some of the philosophical ideas of Bohr. In particular a new interpretation of Bohr’s notion of complementarity is proposed. Finally some possibilities are explored for linking the intuitionistic interpretation of quantum mechanics to the mathematical formalism of the theory. (shrink)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  17.  66
    Two No-Go Theorems for Modal Interpretations of Quantum Mechanics.Pieter E. Vermaas - 1999 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 30 (3):403-431.
    Modal interpretations take quantum mechanics as a theory which assigns at all times definite values to magnitudes of quantum systems. In the case of single systems, modal interpretations manage to do so without falling prey to the Kochen and Specker no-go theorem, because they assign values only to a limited set of magnitudes. In this paper I present two further no-go theorems which prove that two modal interpretations become nevertheless problematic when applied to more than one (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  18.  21
    Two No-Go Theorems for Modal Interpretations of Quantum Mechanics.Pieter E. Vermaas - 1998 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 30 (3):403-431.
    Modal interpretations take quantum mechanics as a theory which assigns at all times definite values to magnitudes of quantum systems. In the case of single systems, modal interpretations manage to do so without falling prey to the Kochen and Specker no-go theorem, because they assign values only to a limited set of magnitudes. In this paper I present two further no-go theorems which prove that two modal interpretations become nevertheless problematic when applied to more than one (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  19. Two Strategies to Infinity: Completeness and Incompleteness. The Completeness of Quantum Mechanics.Vasil Penchev - 2020 - High Performance Computing eJournal 12 (11):1-8.
    Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  20.  37
    Tabletop Experiments for Quantum Gravity Are Also Tests of the Interpretation of Quantum Mechanics.Emily Adlam - 2022 - Foundations of Physics 52 (5):1-43.
    Recently there has been a great deal of interest in tabletop experiments intended to exhibit the quantum nature of gravity by demonstrating that it can induce entanglement. In order to evaluate these experiments, we must determine if there is any interesting class of possibilities that will be convincingly ruled out if it turns out that gravity can indeed induce entanglement. In particular, since one argument for the significance of these experiments rests on the claim that they demonstrate the existence (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  21
    Objectivity versus Nonobjectivity in Quantum Mechanics.Claudio Garola - 2000 - Foundations of Physics 30 (9):1539-1565.
    Nonobjectivity of physical properties enters physics with the standard interpretation of quantum mechanics (QM), and a number of paradoxes of this theory follow from it. It seems, however, based on sound physical arguments (double slit experiment, Heisenberg's principle, Bell–KochenSpecker theorem, etc.), so that most physicists think that avoiding it is impossible. We discuss these arguments here and show that they can be criticized from a physical viewpoint. Our criticism proves that nonobjectivity must be considered an epistemological (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  22.  38
    On time, causation and explanation in the causally symmetric Bohmian model of quantum mechanics.Joseph Berkovitz - 2017 - In Philippe Huneman & Christophe Bouton (eds.), Time of Nature and the Nature of Time: Philosophical Perspectives of Time in Natural Sciences. Cham: Springer. pp. 139-172.
    Quantum mechanics portrays the universe as involving non-local influences that are difficult to reconcile with relativity theory. By postulating backward causation, retro-causal interpretations of quantum mechanics could circumvent these influences and accordingly reconcile quantum mechanics with relativity. The postulation of backward causation poses various challenges for the retro-causal interpretations of quantum mechanics and for the existing conceptual frameworks for analyzing counterfactual dependence, causation and causal explanation. In this chapter, we analyze the nature of time, causation and (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23. The Homeomorphism of Minkowski Space and the Separable Complex Hilbert Space: The physical, Mathematical and Philosophical Interpretations.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (3):1-22.
    A homeomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That homeomorphism can be interpreted physically as the invariance to a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting at another way for proving it, more concise and meaningful physically. Furthermore, the conjecture can (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  24.  23
    A Local Interpretation of Quantum Mechanics.Carlos Lopez - 2016 - Foundations of Physics 46 (4):484-504.
    A local interpretation of quantum mechanics is presented. Its main ingredients are: first, a label attached to one of the “virtual” paths in the path integral formalism, determining the output for measurement of position or momentum; second, a mathematical model for spin states, equivalent to the path integral formalism for point particles in space time, with the corresponding label. The mathematical machinery of orthodox quantum mechanics is maintained, in particular amplitudes of probability and Born’s rule; therefore, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25. “Fuzzy time”, a Solution of Unexpected Hanging Paradox (a Fuzzy interpretation of Quantum Mechanics).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  26.  45
    Locality and Measurements Within the SR Model for an Objective Interpretation of Quantum Mechanics.Claudio Garola & Jarosław Pykacz - 2004 - Foundations of Physics 34 (3):449-475.
    One of the authors has recently propounded an SR model which shows, circumventing known no-go theorems, that an objective interpretation of quantum mechanics is possible. We consider here compound physical systems and show why the proofs of nonlocality of QM do not hold within the SR model, which is slightly simplified in this paper. We also discuss quantum measurement theory within this model, note that the objectification problem disappears since the measurement of any property (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  27.  25
    The contextual character of modal interpretations of quantum mechanics.Graciela Domenech, Hector Freytes & Christian de Ronde - unknown
    In this article we discuss the contextual character of quantum mechanics in the framework of modal interpretations. We investigate its historical origin and relate contemporary modal interpretations to those proposed by M. Born and W. Heisenberg. We present then a general characterization of what we consider to be a modal interpretation. Following previous papers in which we have introduced modalities in the Kochen-Specker theorem, we investigate the consequences of these theorems in relation to the modal interpretations (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  28. From the 'Free Will Theorems' to the 'Choice Ontology' of Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (33):1-10.
    If the concept of “free will” is reduced to that of “choice” all physical world share the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly certain preliminary goal, and the choice is only the mean, by which it can be achieved or not by the one who determines the goal. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29.  54
    The Modal Interpretation of Quantum Mechanics.Gary M. Hardegree - 1976 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1976:82 - 103.
    This paper presents a general formal semantic scheme for the interpretation of quantum mechanics, in terms of which van Fraassen's Copenhagen and anti-Copenhagen variants of the modal interpretation are examined. The general character of the modal interpretation is motivated in a discussion of classical statistical mechanics, the distinction being made between statistical states and micro-states. The notion of a quasi-classical (micro) state is introduced in a discussion of the theorem of Gleason and Kochen and (...). It is shown that, according to the anti-Copenhagen variant, the class of micro-states coincides with a special class of quasi-classical states. The paper concludes with two general criticisms of the anti-Copenhagen variant. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. The properties of modal interpretations of quantum mechanics.Rob Clifton - 1996 - British Journal for the Philosophy of Science 47 (3):371-398.
    Orthodox quantum mechanics includes the principle that an observable of a system possesses a well-defined value if and only if the presence of that value in the system is certain to be confirmed on measurement. Modal interpretations reject the controversial ‘only if’ half of this principle to secure definite outcomes for quantum measurements that leave the apparatus entangled with the object it has measured. However, using a result that turns on the construction of a KochenSpecker contradiction, (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  31.  80
    A Potentiality and Conceptuality Interpretation of Quantum Physics.Diederik Aerts - 2010 - Philosophica 83 (1).
    We elaborate on a new interpretation of quantum mechanics which we introduced recently. The main hypothesis of this new interpretation is that quantum particles are entities interacting with matter conceptually, which means that pieces of matter function as interfaces for the conceptual content carried by the quantum particles. We explain how our interpretation was inspired by our earlier analysis of non-locality as non-spatiality and a specific interpretation of quantum potentiality, which we illustrate (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  32.  50
    Logical foundations for modal interpretations of quantum mechanics.Michael Dickson - 1996 - Philosophy of Science 63 (3):329.
    This paper proposes a logic, motivated by modal interpretations, in which every quantum mechanics propositions has a truth-value. This logic is completely classical, hence violates the conditions of the Kochen-Specker theorem. It is shown how the violation occurs, and it is argued that this violation is a natural and acceptable consequence of modal interpretations. It is shown that despite its classicality, the proposed logic is empirically indistinguishable from quantum logic.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  8
    Logical Foundations for Modal Interpretations of Quantum Mechanics.Michael Dickson - 1996 - Philosophy of Science 63 (5):S322-S329.
    This paper proposes a logic, motivated by modal interpretations, in which every quantum mechanics propositions has a truth-value. This logic is completely classical, hence violates the conditions of the Kochen-Specker theorem. It is shown how the violation occurs, and it is argued that this violation is a natural and acceptable consequence of modal interpretations. It is shown that despite its classicality, the proposed logic is empirically indistinguishable from quantum logic.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Quantum Invariance.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (22):1-6.
    Quantum invariance designates the relation of any quantum coherent state to the corresponding statistical ensemble of measured results. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement. A set-theory corollary is the curious invariance to the axiom of choice: Any coherent state excludes any well-ordering and thus excludes also the axiom of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  35.  74
    A philosopher's understanding of quantum mechanics: possibilities and impossibilities of a modal interpretation.Pieter E. Vermaas - 1999 - New York: Cambridge University Press.
    This book is about how to understand quantum mechanics by means of a modal interpretation. Modal interpretations provide a general framework within which quantum mechanics can be considered as a theory that describes reality in terms of physical systems possessing definite properties. Quantum mechanics is standardly understood to be a theory about probabilities with which measurements have outcomes. Modal interpretations are relatively new attempts to present quantum mechanics as a theory which, like other physical theories, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   25 citations  
  36. The Indeterminist Objectivity of Quantum Mechanics Versus the Determinist Subjectivity of Classical Physics.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (18):1-5.
    Indeterminism of quantum mechanics is considered as an immediate corollary from the theorems about absence of hidden variables in it, and first of all, the KochenSpecker theorem. The base postulate of quantum mechanics formulated by Niels Bohr that it studies the system of an investigated microscopic quantum entity and the macroscopic apparatus described by the smooth equations of classical mechanics by the readings of the latter implies as a necessary condition of quantum (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  37.  76
    Measurement and the Interpretation of Quantum Mechanics and Relativity Theory.W. M. De Muynck - 1995 - Synthese 102 (2):293 - 318.
    The axiomatic approaches of quantum mechanics and relativity theory are compared with approaches in which the theories are thought to describe readings of certain measurement operations. The usual axioms are shown to correspond with classes of ideal measurements. The necessity is discussed of generalizing the formalisms of both quantum mechanics and relativity theory so as to encompass more realistic nonideal measurements. It is argued that this generalization favours an empiricist interpretation of the mathematical formalisms over a realist (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  38. On EPR-Type Entanglement in the Experiments of Scully et al. I. The Micromaser Case and Delayed-Choice Quantum Erasure.F. Herbut - 2008 - Foundations of Physics 38 (11):1046-1064.
    Delayed-choice erasure is investigated in two-photon two-slit experiments that are generalizations of the micromaser experiment of Scully et al. (Nature 351:111–116, 1991). Applying quantum mechanics to the localization detector, it is shown that erasure with delayed choice in the sense of Scully, has an analogous structure as simple erasure. The description goes beyond probabilities. The EPR-type disentanglement, consisting in two mutually incompatible distant measurements, is used as a general framework in both parts of this study. Two simple (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  39.  9
    PBR, Nonreality and Entangled Measurement.Gábor Hofer-Szabó - 2024 - Foundations of Physics 54 (3):1-7.
    In a recent paper, Cabbolet argues that the PBR theorem is nonreal since in the ensemble interpretation of quantum mechanics the entangled measurement used in the derivation of the PBR theorem is nonexisting. However, Cabbolet (1) does not provide any argument for the nonexistence of entangled measurements beyond the incompatibility of the existence of entangled measurements and the existence of $$\psi$$ -epistemic models which we already know from the PBR theorem; and (2) he does not show why it (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  40. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  41.  29
    A Simple Model for an Objective Interpretation of Quantum Mechanics.Claudio Garola - 2002 - Foundations of Physics 32 (10):1597-1615.
    An SR model is presented that shows how an objective (noncontextual and local) interpretation of quantum mechanics can be constructed, which contradicts some well-established beliefs following from the standard interpretation of the theory and from known no-go theorems. The SR model is not a hidden variables theory in the standard sense, but it can be considered a hidden parameters theory which satisfies constraints that are weaker than those usually imposed on standard hidden variables theories. The (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  42. The isomorphism of Minkowski space and the separable complex Hilbert space and its physical interpretation.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier:SSRN) 13 (31):1-3.
    An isomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That isomorphism can be interpreted physically as the invariance between a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting another way for proving it, more concise and meaningful physically. Mathematically, the isomorphism means the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  43. A uniqueness theorem for ‘no collapse’ interpretations of quantum mechanics.Jeffrey Bub & Rob Clifton - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (2):181-219.
    We prove a uniqueness theorem showing that, subject to certain natural constraints, all 'no collapse' interpretations of quantum mechanics can be uniquely characterized and reduced to the choice of a particular preferred observable as determine (definite, sharp). We show how certain versions of the modal interpretation, Bohm's 'causal' interpretation, Bohr's complementarity interpretation, and the orthodox (Dirac-von Neumann) interpretation without the projection postulate can be recovered from the theorem. Bohr's complementarity and Einstein's realism appear as (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  44. The Symmetries of Quantum and Classical Information. The Ressurrected “Ether" of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (41):1-36.
    The paper considers the symmetries of a bit of information corresponding to one, two or three qubits of quantum information and identifiable as the three basic symmetries of the Standard model, U(1), SU(2), and SU(3) accordingly. They refer to “empty qubits” (or the free variable of quantum information), i.e. those in which no point is chosen (recorded). The choice of a certain point violates those symmetries. It can be represented furthermore as the choice of a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  45. Axiomatic Quantum Mechanics and Completeness.Carsten Held - 2008 - Foundations of Physics 38 (8):707-732.
    The standard axiomatization of quantum mechanics (QM) is not fully explicit about the role of the time-parameter. Especially, the time reference within the probability algorithm (the Born Rule, BR) is unclear. From a probability principle P1 and a second principle P2 affording a most natural way to make BR precise, a logical conflict with the standard expression for the completeness of QM can be derived. Rejecting P1 is implausible. Rejecting P2 leads to unphysical results and to a conflict with (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  46. Measurement and the interpretation of quantum mechanics and relativity theory.W. M. de Muynck - 1995 - Synthese 102 (2):293-318.
    The axiomatic approaches of quantum mechanics and relativity theory are compared with approaches in which the theories are thought to describe readings of certain measurement operations. The usual axioms are shown to correspond with classes of ideal measurements. The necessity is discussed of generalizing the formalisms of both quantum mechanics and relativity theory so as to encompass more realistic nonideal measurements. It is argued that this generalization favours an empiricist interpretation of the mathematical formalisms over a realist (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  47. Problem of the Direct Quantum-Information Transformation of Chemical Substance.Vasil Penchev - 2020 - Computational and Theoretical Chemistry eJournal (Elsevier: SSRN) 3 (26):1-15.
    Arthur Clark and Michael Kube–McDowell (“The Triger”, 2000) suggested the sci-fi idea about the direct transformation from a chemical substance to another by the action of a newly physical, “Trigger” field. Karl Brohier, a Nobel Prize winner, who is a dramatic persona in the novel, elaborates a new theory, re-reading and re-writing Pauling’s “The Nature of the Chemical Bond”; according to Brohier: “Information organizes and differentiates energy. It regularizes and stabilizes matter. Information propagates through matter-energy and mediates the interactions of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  48. How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  49. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  50.  13
    Ontological indistinguishability as a central tenet of quantum theory.José Acacio de Barros & Federico Holik - 2023 - Philosophical Transactions of the Royal Society A 381:20220100.
    Quantum indistinguishability directly relates to the philosophical debate on the notions of identity and individuality. They are crucial for our understanding of multipartite quantum systems. Furthermore, the correct interpretation of this feature of quantum theory has implications that transcend fundamental science and philosophy, given that quantum indistinguishability is a resource in quantum information theory. Most of the conceptual analysis of quantum indistinguishability is restricted to studying the permutational invariance of quantum states, the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 988