Results for 'Circular Theory, Quantum Circuits, Quantum Mechanics, Quantum Theory, Information Processors, Information Processing'

1000+ found
Order:
  1.  24
    Quantum Information Theory & the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Quantum Information Theory and the Foundations of Quantum Mechanics is a conceptual analysis of one of the most prominent and exciting new areas of physics, providing the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. -/- Beginning from a careful, revisionary, analysis of the concepts of information in the everyday and classical information-theory settings, Christopher G. Timpson argues for an ontologically (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   48 citations  
  2.  3
    Husserl’s Reconsideration of the Observation Process and Its Possible Connections with Quantum Mechanics: Supplementation of Informational Foundations of Quantum Theory.Tina Bilban - 2013 - Prolegomena 12 (2):459-486.
    In modern science, established by the scientific revolution in 16th and 17th century, the scientific observation process is understood as a process where the observer directly grasps Nature as the observed and scientific mathematical formulation is understood as a direct description of reality. Husserl criticized this lack of distinction between method and the object of investigation in modern science and emphasized the importance of phenomena in the observation process. A similar approach was used by Bohr in his interpretation of (...) experiments that seemed inexplicable from the modern science point of view. Many contemporary interpretations of quantum mechanics follow Bohr’s opposition to the realism of modern science. Among them is informational foundations of quantum theory that connects parts of his interpretation with the latest quantum experiments, but due to the complexity and individuality of Bohr’s interpretation, its philosophical consistency is mostly lost. In IFQT there is no direct connection between information and the observed. This ambiguous ontic status of information is often criticised, however, it can be solved by supplementation with Husserl’s philosophical understanding of the observation process. If Husserl’s definition of the relationship between the thing and the phenomenon is transmitted to the relationship between the observed and information in IFQT information can be understood as the direct answer to the question about the observed and thereby the observer’s only knowledge about it. This helps to reject the main criticism of IFQT and to additionally support its explanations of quantum phenomena. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  3. Quantum mechanical measurement in monistic systems theory.Klaus Fröhlich - 2023 - Science and Philosophy 11 (2):76-83.
    The monistic worldview aims at a uniform description of nature based on scientific models. Quantum physical systems are mutually part of the other quantum physical systems. An aperture distributes the subsystems and the wave front in all possible ways. The system only takes one of the possible paths, as measurements show. Conclusion from Bell's theorem: Before the quantum physical measurement, there is no point-like location in the universe where all the information that explains the measurement is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  4.  27
    Quantum information processing, operational quantum logic, convexity, and the foundations of physics.Howard Barnum - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (3):343-379.
    Quantum information science is a source of task-related axioms whose consequences can be explored in general settings encompassing quantum mechanics, classical theory, and more. Quantum states are compendia of probabilities for the outcomes of possible operations we may perform on a system: ''operational states.'' I discuss general frameworks for ''operational theories'' (sets of possible operational states of a system), in which convexity plays key role. The main technical content of the paper is in a theorem that (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  11
    Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology.Masanari Asano, Irina Basieva, Andrei Khrennikov, Masanori Ohya, Yoshiharu Tanaka & Ichiro Yamato - 2015 - Foundations of Physics 45 (10):1362-1378.
    We discuss foundational issues of quantum information biology —one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from “traditional quantum biophysics”. The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Quantum Theories of Consciousness.Paavo Pylkkänen - 2018 - In Rocco J. Gennaro (ed.), Routledge Handbook of Consciousness. New York: Routledge. pp. 216-231.
    This paper provides a brief introduction to quantum theory and the proceeds to discuss the different ways in which the relationship between quantum theory and mind/consciousness is seen in some of the main alternative interpretations of quantum theory namely by Bohr; von Neumann; Penrose: Everett; and Bohm and Hiley. It briefly considers how qualia might be explained in a quantum framework, and makes a connection to research on quantum biology, quantum cognition and quantum (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  7.  6
    Quantum Theory from a Nonlinear Perspective : Riccati Equations in Fundamental Physics.Dieter Schuch - 2018 - Cham: Imprint: Springer.
    This book provides a unique survey displaying the power of Riccati equations to describe reversible and irreversible processes in physics and, in particular, quantum physics. Quantum mechanics is supposedly linear, invariant under time-reversal, conserving energy and, in contrast to classical theories, essentially based on the use of complex quantities. However, on a macroscopic level, processes apparently obey nonlinear irreversible evolution equations and dissipate energy. The Riccati equation, a nonlinear equation that can be linearized, has the potential to link (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Can Quantum Mechanics Solve the Hard Problem of Consciousness?Basil J. Hiley & Paavo Pylkkänen - 2022 - In Shan Gao (ed.), Consciousness and Quantum Mechanics. Oxford University Press, Usa.
    The hard problem of consciousness is the problem of explaining how and why physical processes give rise to consciousness (Chalmers 1995). Regardless of many attempts to solve the problem, there is still no commonly agreed solution. It is thus very likely that some radically new ideas are required if we are to make any progress. In this paper we turn to quantum theory to find out whether it has anything to offer in our attempts to understand the place of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  39
    Understanding Quantum Raffles: Quantum Mechanics on an Informational Approach - Structure and Interpretation (Foreword by Jeffrey Bub).Michael Janas, Michael E. Cuffaro & Michel Janssen - 2022 - Springer.
    This book offers a thorough technical elaboration and philosophical defense of an objectivist informational interpretation of quantum mechanics according to which its novel content is located in its kinematical framework, that is, in how the theory describes systems independently of the specifics of their dynamics. -/- It will be of interest to researchers and students in the philosophy of physics and in theoretical physics with an interest in the foundations of quantum mechanics. Additionally, parts of the book may (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  10.  8
    Probing the meaning of quantum mechanics: superpositions, dynamics, semantics and identity: Quantum Mechanics and Quantum Information: Physical, Philosophical and Logical Approaches, Cagliari, Italy, 23-25 July 2014.Diederik Aerts, Christian de Ronde, Hector Freytes & Roberto Giuntini (eds.) - 2016 - New Jersey: World Scientific.
    This book provides an interdisciplinary approach to one of the most fascinating and important open questions in science: What is quantum mechanics really talking about? In the last decades quantum mechanics has given rise to a new quantum technological era, a revolution taking place today especially within the field of quantum information processing; which goes from quantum teleportation and cryptography to quantum computation. Quantum theory is probably our best confirmed physical theory. (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  11.  10
    The Nature of Information in Quantum Mechanics.Duvenhage Rocco - 2002 - Foundations of Physics 32 (9):1399-1417.
    A suitable unified statistical formulation of quantum and classical mechanics in a *-algebraic setting leads us to conclude that information itself is noncommutative in quantum mechanics. Specifically we refer here to an observer's information regarding a physical system. This is seen as the main difference from classical mechanics, where an observer's information regarding a physical system obeys classical probability theory. Quantum mechanics is then viewed purely as a mathematical framework for the probabilistic description of (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  32
    Bohmian Mechanics and Quantum Information.Sheldon Goldstein - 2010 - Foundations of Physics 40 (4):335-355.
    Many recent results suggest that quantum theory is about information, and that quantum theory is best understood as arising from principles concerning information and information processing. At the same time, by far the simplest version of quantum mechanics, Bohmian mechanics, is concerned, not with information but with the behavior of an objective microscopic reality given by particles and their positions. What I would like to do here is to examine whether, and to (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  13.  3
    Quantum Mechanics, Mathematics, Cognition and Action: Proposals for a Formalized Epistemology.Mioara Mugur-Schächter & Alwyn Merwe - 2010 - Springer.
    The purpose of this book is to initiate a new discipline, namely a formalized epistemological method drawn from the cognitive strategies practised in the most effective among the modern scientific disciplines, as well as from general philosophical thinking. Indeed, what is lacking in order to improve our knowledge and our domination of the modes which nowadays are available for the generation and communication of knowledge, thoroughly and rapidly and with precision and detail? It is a systematic explication of the epistemological (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  14.  4
    Quantum Mechanics Emerges from Information Theory Applied to Causal Horizons.Jae-Weon Lee - 2011 - Foundations of Physics 41 (4):744-753.
    It is suggested that quantum mechanics is not fundamental but emerges from classical information theory applied to causal horizons. The path integral quantization and quantum randomness can be derived by considering information loss of fields or particles crossing Rindler horizons for accelerating observers. This implies that information is one of the fundamental roots of all physical phenomena. The connection between this theory and Verlinde’s entropic gravity theory is also investigated.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  15. Quantum theory and the brain.Matthew Donald - unknown
    A human brain operates as a pattern of switching. An abstract definition of a quantum mechanical switch is given which allows for the continual random fluctuations in the warm wet environment of the brain. Among several switch-like entities in the brain, we choose to focus on the sodium channel proteins. After explaining what these are, we analyse the ways in which our definition of a quantum switch can be satisfied by portions of such proteins. We calculate the perturbing (...)
     
    Export citation  
     
    Bookmark   25 citations  
  16.  22
    Two dogmas about quantum mechanics.Jeffrey Bub & Itamar Pitowsky - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory, & Reality. Oxford, GB: Oxford University Press UK.
    We argue that the intractable part of the measurement problem -- the 'big' measurement problem -- is a pseudo-problem that depends for its legitimacy on the acceptance of two dogmas. The first dogma is John Bell's assertion that measurement should never be introduced as a primitive process in a fundamental mechanical theory like classical or quantum mechanics, but should always be open to a complete analysis, in principle, of how the individual outcomes come about dynamically. The second dogma is (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   32 citations  
  17.  4
    The Principles of Quantum Theory, From Planck's Quanta to the Higgs Boson: The Nature of Quantum Reality and the Spirit of Copenhagen.Arkady Plotnitsky - 2016 - Cham: Imprint: Springer.
    The book considers foundational thinking in quantum theory, focusing on the role the fundamental principles and principle thinking there, including thinking that leads to the invention of new principles, which is, the book contends, one of the ultimate achievements of theoretical thinking in physics and beyond. The focus on principles, prominent during the rise and in the immediate aftermath of quantum theory, has been uncommon in more recent discussions and debates concerning it. The book argues, however, that exploring (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  18.  3
    Statistical inference and quantum mechanical measurement.Rodney W. Benoist, Jean-Paul Marchand & Wolfgang Yourgrau - 1977 - Foundations of Physics 7 (11-12):827-833.
    We analyze the quantum mechanical measuring process from the standpoint of information theory. Statistical inference is used in order to define the most likely state of the measured system that is compatible with the readings of the measuring instrument and the a priori information about the correlations between the system and the instrument. This approach has the advantage that no reference to the time evolution of the combined system need be made. It must, however, be emphasized that (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  19.  6
    Information-Theoretic Interpretation of Quantum Formalism.Michel Feldmann - 2023 - Foundations of Physics 53 (3):1-59.
    We present an information-theoretic interpretation of quantum formalism based on a Bayesian framework and devoid of any extra axiom or principle. Quantum information is construed as a technique for analyzing a logical system subject to classical constraints, based on a question-and-answer procedure. The problem is posed from a particular batch of queries while the constraints are represented by the truth table of a set of Boolean functions. The Bayesian inference technique consists in assigning a probability distribution (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  9
    Interpretations of quantum mechanics: A critical survey.Michele Caponigro - unknown
    This brief survey analyzes the epistemological implications about the role of observer in the interpretations of Quantum Mechanics. As we know, the goal of most interpretations of quantum mechanics is to avoid the apparent intrusion of the observer into the measurement process. In the same time, there are implicit and hidden assumptions about his role. In fact, most interpretations taking as ontic level one of these fundamental concepts as information, physical law and matter bring us to new (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  21.  99
    A simple proof of Born’s rule for statistical interpretation of quantum mechanics.Biswaranjan Dikshit - 2017 - Journal for Foundations and Applications of Physics 4 (1):24-30.
    The Born’s rule to interpret the square of wave function as the probability to get a specific value in measurement has been accepted as a postulate in foundations of quantum mechanics. Although there have been so many attempts at deriving this rule theoretically using different approaches such as frequency operator approach, many-world theory, Bayesian probability and envariance, literature shows that arguments in each of these methods are circular. In view of absence of a convincing theoretical proof, recently some (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22.  12
    Quantum Theory: Informational Foundations and Foils.Giulio Chiribella & Robert W. Spekkens (eds.) - 2016 - Dordrecht: Imprint: Springer.
    This book provides the first unified overview of the burgeoning research area at the interface between Quantum Foundations and Quantum Information. Topics include: operational alternatives to quantum theory, information-theoretic reconstructions of the quantum formalism, mathematical frameworks for operational theories, and device-independent features of the set of quantum correlations. Powered by the injection of fresh ideas from the field of Quantum Information and Computation, the foundations of Quantum Mechanics are in the (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  23.  20
    Quantum Information Theory and the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2013 - Oxford, GB: Oxford University Press.
    Christopher G. Timpson provides the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. He argues for an ontologically deflationary account of the nature of quantum information, which is grounded in a revisionary analysis of the concepts of information.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   56 citations  
  24.  12
    The gestalt problem in quantum theory: Generation of molecular shape by the environment. [REVIEW]Anton Amann - 1993 - Synthese 97 (1):125 - 156.
    Quantum systems have a holistic structure, which implies that they cannot be divided into parts. In order tocreate (sub)objects like individual substances, molecules, nuclei, etc., in a universal whole, the Einstein-Podolsky-Rosen correlations between all the subentities, e.g. all the molecules in a substance, must be suppressed by perceptual and mental processes.Here the particular problems ofGestalt (shape)perception are compared with the attempts toattribute a shape to a quantum mechanical system like a molecule. Gestalt perception and quantum mechanics turn (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  25.  62
    Cognition according to Quantum Information: Three Epistemological Puzzles Solved.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (20):1-15.
    The cognition of quantum processes raises a series of questions about ordering and information connecting the states of one and the same system before and after measurement: Quantum measurement, quantum in-variance and the non-locality of quantum information are considered in the paper from an epistemological viewpoint. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  26.  70
    Quantum Invariance.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (22):1-6.
    Quantum invariance designates the relation of any quantum coherent state to the corresponding statistical ensemble of measured results. The adequate generalization of ‘measurement’ is discussed to involve the discrepancy, due to the fundamental Planck constant, between any quantum coherent state and its statistical representation as a statistical ensemble after measurement. A set-theory corollary is the curious invariance to the axiom of choice: Any coherent state excludes any well-ordering and thus excludes also the axiom of choice. It should (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  27.  6
    Quantum Causality: Conceptual Issues in the Causal Theory of Quantum Mechanics.Peter J. Riggs - 2009 - Dordrecht: Springer Academic.
    The Causal Theory of Quantum Mechanics provides a better understanding of the fundamentals of quantum mechanics than is provided by Orthodox (i.e. Copenhagen) Quantum Theory by describing micro-phenomena in terms of entities and processes in space and time, thereby embracing causality at the quantum level. The book focuses especially on finding solutions to conceptual issues about the nature of energy, the conservation of energy, forces, and the Exclusion Principle within the context of the Causal Theory of (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  28.  29
    Explaining the Unobserved—Why Quantum Mechanics Ain’t Only About Information.Amit Hagar & Meir Hemmo - 2006 - Foundations of Physics 36 (9):1295-1234.
    A remarkable theorem by Clifton, Bub and Halvorson (2003) (CBH) characterizes quantum theory in terms of information--theoretic principles. According to Bub (2004, 2005) the philosophical significance of the theorem is that quantum theory should be regarded as a ``principle'' theory about (quantum) information rather than a ``constructive'' theory about the dynamics of quantum systems. Here we criticize Bub's principle approach arguing that if the mathematical formalism of quantum mechanics remains intact then there is (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  29.  10
    Quantum Mechanics Based on an Extended Least Action Principle and Information Metrics of Vacuum Fluctuations.Jianhao M. Yang - 2024 - Foundations of Physics 54 (3):1-31.
    We show that the formulations of non-relativistic quantum mechanics can be derived from an extended least action principle. The principle can be considered as an extension of the least action principle from classical mechanics by factoring in two assumptions. First, the Planck constant defines the minimal amount of action a physical system needs to exhibit during its dynamics in order to be observable. Second, there is constant vacuum fluctuation along a classical trajectory. A novel method is introduced to define (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  30.  71
    The Neoclassical Interpretation of Modern Physics and it Implications for an Information Based Interpretation of Spirituality.Shiva Meucci - 2015 - Cosmos and History 11 (2):8-27.
    The neoclassical interpretation of quantum mechanics which re-introduces older conceptual models of gravity and electromagnetism transformed by modern advancements in the field is discussed as a natural outcome from the interchangeability of quantum mechanics and fluid dynamics in light of recent macro-level experiments which show behaviors previously believed to be confined to the quantum world. This superfluid model of mechanics and the known behaviors of superfluids is suggested as a possible substrate and system for the storage and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  31.  44
    Quantum Mechanics is About Quantum Information.Jeffrey Bub - 2005 - Foundations of Physics 35 (4):541-560.
    I argue that quantum mechanics is fundamentally a theory about the representation and manipulation of information, not a theory about the mechanics of nonclassical waves or particles. The notion of quantum information is to be understood as a new physical primitive—just as, following Einstein’s special theory of relativity, a field is no longer regarded as the physical manifestation of vibrations in a mechanical medium, but recognized as a new physical primitive in its own right.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   41 citations  
  32.  5
    On the Character of Quantum Law: Complementarity, Entanglement, and Information.Arkady Plotnitsky - 2017 - Foundations of Physics 47 (8):1115-1154.
    This article considers the relationships between the character of physical law in quantum theory and Bohr’s concept of complementarity, under the assumption of the unrepresentable and possibly inconceivable nature of quantum objects and processes, an assumption that may be seen as the most radical departure from realism currently available. Complementarity, the article argues, is a reflection of the fact that, as against classical physics or relativity, the behavior of quantum objects of the same type, say, all electrons, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  5
    Entanglement, Information, and the Interpretation of Quantum Mechanics.Gregg Jaeger - 2009 - Heidelberg, Germany: Springer.
    Entanglement was initially thought by some to be an oddity restricted to the realm of thought experiments. However, Bell’s inequality delimiting local - behavior and the experimental demonstration of its violation more than 25 years ago made it entirely clear that non-local properties of pure quantum states are more than an intellectual curiosity. Entanglement and non-locality are now understood to figure prominently in the microphysical world, a realm into which technology is rapidly hurtling. Information theory is also increasingly (...)
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  34.  8
    Hiding Information in Theories Beyond Quantum Mechanics, and It’s Application to the Black Hole Information Problem.Markus P. Müller, Jonathan Oppenheim & Oscar C. O. Dahlsten - 2014 - Foundations of Physics 44 (8):829-842.
    The black hole information problem provides important clues for trying to piece together a quantum theory of gravity. Discussions on this topic have generally assumed that in a consistent theory of gravity and quantum mechanics, quantum theory is unmodified. In this review, we discuss the black hole information problem in the context of generalisations of quantum theory. In this preliminary exploration, we examine black holes in the setting of generalised probabilistic theories, in which (...) theory and classical probability theory are special cases. We are able to calculate the time it takes information to escape a black hole, assuming that information is preserved. In quantum mechanics, information should escape pure state black holes after half the Hawking photons have been emitted, but we find that this get’s modified in generalisations of quantum mechanics. Likewise the black-hole mirror result of Hayden and Preskill, that information from entangled black holes can escape quickly, also get’s modified. We find that although information exits the black hole as predicted by quantum theory, it is fairly generic that it fails to appear outside the black hole at this point—something impossible in quantum theory due to the no-hiding theorem. The information is neither inside the black hole, nor outside it, but is delocalised. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  9
    Engineering Entanglement, Conceptualizing Quantum Information.Chen-Pang Yeang - 2011 - Annals of Science 68 (3):325-350.
    Summary Proposed by Einstein, Podolsky, and Rosen (EPR) in 1935, the entangled state has played a central part in exploring the foundation of quantum mechanics. At the end of the twentieth century, however, some physicists and mathematicians set aside the epistemological debates associated with EPR and turned it from a philosophical puzzle into practical resources for information processing. This paper examines the origin of what is known as quantum information. Scientists had considered making quantum (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  42
    Characterizing quantum theory in terms of information-theoretic constraints.Rob Clifton, Jeffrey Bub & Hans Halvorson - 2002 - Foundations of Physics 33 (11):1561-1591.
    We show that three fundamental information-theoretic constraints -- the impossibility of superluminal information transfer between two physical systems by performing measurements on one of them, the impossibility of broadcasting the information contained in an unknown physical state, and the impossibility of unconditionally secure bit commitment -- suffice to entail that the observables and state space of a physical theory are quantum-mechanical. We demonstrate the converse derivation in part, and consider the implications of alternative answers to a (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   111 citations  
  37.  8
    Quantum Objects: Non-Local Correlation, Causality and Objective Indefiniteness in the Quantum World.Gregg Jaeger - 2013 - Berlin, Heidelberg: Imprint: Springer.
    This monograph identifies the essential characteristics of the objects described by current quantum theory and considers their relationship to space-time. In the process, it explicates the senses in which quantum objects may be consistently considered to have parts of which they may be composed or into which they may be decomposed. The book also demonstrates the degree to which reduction is possible in quantum mechanics, showing it to be related to the objective indefiniteness of quantum properties (...)
    Direct download  
     
    Export citation  
     
    Bookmark   9 citations  
  38. Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then elementary (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  39.  4
    Quantum reaxiomatisations and information-theoretic interpretations of quantum theory.Leah Henderson - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:292-300.
    Jeff Bub has developed an information-theoretic interpretation of quantum mechanics on the basis of the programme to reaxiomatise the theory in terms of information-theoretic principles. According to the most recent version of the interpretation, reaxiomatisation can dissolve some of the demands for explanation traditionally associated with the task of providing an interpretation for the theory. The key idea is that the real lesson we should take away from quantum mechanics is that the ‘structure of in- formation’ (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  40.  4
    Information theory, quantum mechanics and‘linguistic duality’.C. T. K. Chari - 1966 - Dialectica 20 (1):67-88.
    – The paper explores first the postulational basis and significance of‘measures of information’in current information theory and their possible relations to physical entropy and Brillouin's‘negentropy’regarded as the negative of entropy. For some purposes, the same pattern or formal structure may be abstracted from both‘entropy’and‘information’. The paper analyzes, in the second place, the mathematical analogies which have been traced between information theory and quantum mechanics and argues that the analogies have but a limited value when we (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  5
    Law and policy for the quantum age.Chris Jay Hoofnagle - 2021 - New York: Cambridge University Press. Edited by Simson Garfinkel.
    the smallest scales-why a molecule of water gets hot in a microwave oven, or how a uranium atom splits in a nuclear reactor. The rules of quantum mechanics are often counterintuitive and seem incompatible with our everyday experiences. Over the past century, deeper understanding of quantum mechanics has given scientists better control of the quantum world and quantum effects. This control provides technologists with new ways to acquire, process, and transmit information as part of a (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  42.  9
    Quantum Incompressibility of a Falling Rydberg Atom, and a Gravitationally-Induced Charge Separation Effect in Superconducting Systems.R. Y. Chiao, S. J. Minter, K. Wegter-McNelly & L. A. Martinez - 2012 - Foundations of Physics 42 (1):173-191.
    Freely falling point-like objects converge toward the center of the Earth. Hence the gravitational field of the Earth is inhomogeneous, and possesses a tidal component. The free fall of an extended quantum mechanical object such as a hydrogen atom prepared in a high principal-quantum-number state, i.e. a circular Rydberg atom, is predicted to fall more slowly than a classical point-like object, when both objects are dropped from the same height above the Earth’s surface. This indicates that, apart (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  43.  5
    A Relational Time-Symmetric Framework for Analyzing the Quantum Computational Speedup.G. Castagnoli, E. Cohen, A. K. Ekert & A. C. Elitzur - 2019 - Foundations of Physics 49 (10):1200-1230.
    The usual representation of quantum algorithms is limited to the process of solving the problem. We extend it to the process of setting the problem. Bob, the problem setter, selects a problem-setting by the initial measurement. Alice, the problem solver, unitarily computes the corresponding solution and reads it by the final measurement. This simple extension creates a new perspective from which to see the quantum algorithm. First, it highlights the relevance of time-symmetric quantum mechanics to quantum (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  17
    Quantum computation and pseudotelepathic games.Jeffrey Bub - 2008 - Philosophy of Science 75 (4):458-472.
    A quantum algorithm succeeds not because the superposition principle allows ‘the computation of all values of a function at once’ via ‘quantum parallelism’, but rather because the structure of a quantum state space allows new sorts of correlations associated with entanglement, with new possibilities for informationprocessing transformations between correlations, that are not possible in a classical state space. I illustrate this with an elementary example of a problem for which a quantum algorithm is more (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  45.  21
    Quantum theory is not only about information.Laura Felline - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:256-265.
    In his recent book Bananaworld. Quantum mechanics for primates, Jeff Bub revives and provides a mature version of his influential information-theoretic interpretation of Quantum Theory (QT). In this paper, I test Bub’s conjecture that QT should be interpreted as a theory about information, by examining whether his information-theoretic interpretation has the resources to explain (or explain away) quantum conundrums. The discussion of Bub’s theses will also serve to investigate, more in general, whether other approaches (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  46.  8
    Informational foundations of quantum theory: critical reconsideration from the point of view of a phenomenologist.Tina Bilban - 2021 - Continental Philosophy Review 54 (4):581-594.
    Several contemporary interpretations of quantum mechanics use the concept of information as a tool for addressing and explaining the quantum world. In the article, I focus on Zeilinger-Brukner's informational foundations of quantum theory. I propose that with a phenomenological approach—which, unlike most of the contemporary interpretations of quantum mechanics, exceeds the mere dichotomy between realism and anti-realism—we can address the epistemological questions re-opened by IFQT and the parts of the interpretation that are recognized as problematic (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  47.  11
    The Information Interpretation and the Conceptual Problems of Quantum Mechanics.Miguel Ferrero - 2003 - Foundations of Physics 33 (4):665-676.
    It has been traditionally considered that Quantum Mechanics has two conceptual kinds of problems, namely, those related with local-realism and the so-called measurement problem. That is, the uniqueness of the result when we make a measurement. With the development of what is called generically Quantum Information Theory, a new form of the Copenhagen interpretation of the formalism has taken shape.(1) In this paper, we will analyse if this information interpretation is able to clarify these old problems. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  48.  12
    Stochastic theory for classical and quantum mechanical systems.L. de la Peña & A. M. Cetto - 1975 - Foundations of Physics 5 (2):355-370.
    We formulate from first principles a theory of stochastic processes in configuration space. The fundamental equations of the theory are an equation of motion which generalizes Newton's second law and an equation which expresses the condition of conservation of matter. Two types of stochastic motion are possible, both described by the same general equations, but leading in one case to classical Brownian motion behavior and in the other to quantum mechanical behavior. The Schrödinger equation, which is derived here with (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  49.  64
    Quantum mechanics and consciousness: Thoughts on a causal correspondence theory.Ian J. Thompson - 2017 - In S. Gosh, B. D. Mundhra, K. Vasudeva Rao & Varun Agarwal (eds.), Quantum Physics & Consciousness - Thoughts of Founding Fathers of Quantum Physics and other Renowned Scholars. Bhaktivedanta Institute. pp. 173-185.
    Which way does causation proceed? The pattern in the material world seems to be upward: particles to molecules to organisms to brains to mental processes. In contrast, the principles of quantum mechanics allow us to see a pattern of downward causation. These new ideas describe sets of multiple levels in which each level influences the levels below it through generation and selection. Top-down causation makes exciting sense of the world: we can find analogies in psychology, in the formation of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  50. Probabilities for Observing Mixed Quantum States given Limited Prior Information.Matthew J. Donald - unknown
    The original development of the formalism of quantum mechanics involved the study of isolated quantum systems in pure states. Such systems fail to capture important aspects of the warm, wet, and noisy physical world which can better be modelled by quantum statistical mechanics and local quantum field theory using mixed states of continuous systems. In this context, we need to be able to compute quantum probabilities given only partial information. Specifically, suppose that B is (...)
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000