Results for 'Bechtel, William'

1000+ found
Order:
  1. Grounding cognition: heterarchical control mechanisms in biology.William Bechtel & Leonardo Bich - 2021 - Philosophical Transactions of the Royal Society B: Biological Sciences 376 (1820).
    We advance an account that grounds cognition, specifically decision-making, in an activity all organisms as autonomous systems must perform to keep themselves viable—controlling their production mechanisms. Production mechanisms, as we characterize them, perform activities such as procuring resources from their environment, putting these resources to use to construct and repair the organism's body and moving through the environment. Given the variable nature of the environment and the continual degradation of the organism, these production mechanisms must be regulated by control mechanisms (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  2. Organisms Need Mechanisms; Mechanisms Need Organisms.William Bechtel & Leonardo Bich - 2023 - In João L. Cordovil, Gil Santos & Davide Vecchi (eds.), New Mechanism Explanation, Emergence and Reduction. Springer. pp. 85-108.
    According to new mechanists, mechanisms explain how specific biological phenomena are produced. New mechanists have had little to say about how mechanisms relate to the organism in which they reside. A key feature of organisms, emphasized by the autonomy tradition, is that organisms maintain themselves. To do this, they rely on mechanisms. But mechanisms must be controlled so that they produce the phenomena for which they are responsible when and in the manner needed by the organism. To account for how (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  3.  41
    Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research.William Bechtel & Robert C. Richardson - 2010 - Princeton.
    An analysis of two heuristic strategies for the development of mechanistic models, illustrated with historical examples from the life sciences. In Discovering Complexity, William Bechtel and Robert Richardson examine two heuristics that guided the development of mechanistic models in the life sciences: decomposition and localization. Drawing on historical cases from disciplines including cell biology, cognitive neuroscience, and genetics, they identify a number of "choice points" that life scientists confront in developing mechanistic explanations and show how different choices result in (...)
    Direct download  
     
    Export citation  
     
    Bookmark   523 citations  
  4. Using neurons to maintain autonomy: Learning from C. elegans.William Bechtel & Leonardo Bich - 2023 - Biosystems 232:105017.
    Understanding how biological organisms are autonomous—maintain themselves far from equilibrium through their own activities—requires understanding how they regulate those activities. In multicellular animals, such control can be exercised either via endocrine signaling through the vasculature or via neurons. In C. elegans this control is exercised by a well-delineated relatively small but distributed nervous system that relies on both chemical and electric transmission of signals. This system provides resources to integrate information from multiple sources as needed to maintain the organism. Especially (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  5. Autonomous Psychology: What it Should and Should Not Entail.William Bechtel - 1984 - PSA Proceedings of the Biennial Meeting of the Philosophy of Science Association 1984 (1):42-55.
    Cognitivism is now rather clearly the dominant approach in psychology. Philosophers such as Putnam (1975), Dennett (1978), Lycan (1981), and Cummins (1983) have supported the cognitivist strategy by proposing that mental states are to be defined functionally in terms of their interactions with other mental states. One of the most prominent features of the cognitivist-functionalist position is the autonomy it is thought to bestow upon psychology. Psychology, as viewed from this perspective, describes the processing of mental representations within the mind-brain (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6. Organization needs organization: Understanding integrated control in living organisms.Leonardo Bich & William Bechtel - 2022 - Studies in History and Philosophy of Science Part A 93:96-106.
    Organization figures centrally in the understanding of biological systems advanced by both new mechanists and proponents of the autonomy framework. The new mechanists focus on how components of mechanisms are organized to produce a phenomenon and emphasize productive continuity between these components. The autonomy framework focuses on how the components of a biological system are organized in such a way that they contribute to the maintenance of the organisms that produce them. In this paper we analyze and compare these two (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  7. Active biological mechanisms: transforming energy into motion in molecular motors.William Bechtel & Andrew Bollhagen - 2021 - Synthese 199 (5-6):12705-12729.
    Unless one embraces activities as foundational, understanding activities in mechanisms requires an account of the means by which entities in biological mechanisms engage in their activities—an account that does not merely explain activities in terms of more basic entities and activities. Recent biological research on molecular motors exemplifies such an account, one that explains activities in terms of free energy and constraints. After describing the characteristic “stepping” activities of these molecules and mapping the stages of those steps onto the stages (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  8.  26
    Rethinking cognitive architecture: A heterarchical network of different types of information processors.William Bechtel - 2023 - Rivista Internazionale di Filosofia e Psicologia 14:88-102.
    _Abstract_: Rather than seeking a common architecture for cognitive processing, this paper argues that we should recognize that the brain employs multiple information processing structures. Many of these are manifest in brain areas outside the neocortex such as the hypothalamus, brain stem pattern generators, the basal ganglia, and various nuclei releasing neuromodulators. Rather than employing one mode of information processing, the brain employs multiple modes integrated in a heterarchical network. These in turn affect processing within the neocortex and together with (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  9.  16
    Minding the gap: discovering the phenomenon of chemical transmission in the nervous system.William Bechtel - 2023 - History and Philosophy of the Life Sciences 45 (4):1-33.
    The neuron doctrine, according to which nerves consist of discontinuous neurons, presented investigators with the challenge of determining what activities occurred between them or between them and muscles. One group of researchers, dubbed the sparks, viewed the electrical current in one neuron as inducing a current in the next neuron or in muscles. For them there was no gap between the activities of neurons or neurons and muscles that required filling with a new type of activity. A competing group, the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10.  20
    Mental Mechanisms: Philosophical Perspectives on Cognitive Neuroscience.William Bechtel - 2007 - Psychology Press.
    A variety of scientific disciplines have set as their task explaining mental activities, recognizing that in some way these activities depend upon our brain. But, until recently, the opportunities to conduct experiments directly on our brains were limited. As a result, research efforts were split between disciplines such as cognitive psychology, linguistics, and artificial intelligence that investigated behavior, while disciplines such as neuroanatomy, neurophysiology, and genetics experimented on the brains of non-human animals. In recent decades these disciplines integrated, and with (...)
    Direct download  
     
    Export citation  
     
    Bookmark   248 citations  
  11. Discovering Autoinhibition as a Design Principle for the Control of Biological Mechanisms.Andrew Bollhagen & William Bechtel - 2022 - Studies in History and Philosophy of Science 95 (C):145-157.
    Autoinhibition is a design principle realized in many molecular mechanisms in biology. After explicating the notion of a design principle and showing that autoinhibition is such a principle, we focus on how researchers discovered instances of autoinhibition, using research establishing the autoinhibition of the molecular motors kinesin and dynein as our case study. Research on kinesin and dynein began in the fashion described in accounts of mechanistic explanation but, once the mechanisms had been discovered, researchers discovered that they exhibited a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  7
    Phylogenetically distant animals sleep: why do sleep researchers care?William Bechtel - 2023 - Biology and Philosophy 39 (1):1-25.
    Philosophers examining mechanistic explanations in biology have identified heuristic strategies scientists use in discovering mechanisms. This paper examines the heuristic strategy of investigating phylogenetically distant model organisms, using research on sleep in fruit flies as an example. At the time sleep was discovered in flies in 2000 next to nothing was known about mechanisms regulating sleep in flies and what they could reveal about those in us. One relatively straightforward line of research focused on homologous genes in flies and humans, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13. Explanation: a mechanist alternative.William Bechtel & Adele Abrahamsen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):421-441.
    Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ diagrams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations are (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   554 citations  
  14.  3
    Scientific Evidence: Creating and Evaluating Experimental Instruments and Research Techniques.William Bechtel - 1990 - PSA Proceedings of the Biennial Meeting of the Philosophy of Science Association 1990 (1):558-572.
    The question of how scientific hypotheses and theories should be evaluated in light of evidence has been a central question in philosophy of science. Far less attention has been given to the questions of how evidence is developed and is itself evaluated. From this neglect, one might assume that the processes by which scientists develop and evaluate evidence are unproblematic. An examination of the actual practice of experimental scientists, however, reveals that they are far from unproblematic. Much of the evidence (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  2
    What Happens to Accounts of Mind-Brain Relations If We Forego An Architecture of Rules and Representations?.William Bechtel - 1986 - PSA Proceedings of the Biennial Meeting of the Philosophy of Science Association 1986 (1):157-171.
    While some philosophers have assumed that there are only two options for characterizing the ontological status of mental models in cognitive information processing psychology--treating them as nearly autonomous from theories of brain activity (Putnam 1975 and Fodor 1974) or eliminating them in favor of neuroscience accounts (Churchland 1979)-- cognitive scientists have often tacitly assumed a third option. This involves treating the mental models as systems of rules and representations that are instantiated in the nervous system much in the way computer (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16.  24
    Discovering Cell Mechanisms: The Creation of Modern Cell Biology.William Bechtel - 2005 - Cambridge University Press.
    Between 1940 and 1970 pioneers in the new field of cell biology discovered the operative parts of cells and their contributions to cell life. They offered mechanistic accounts that explained cellular phenomena by identifying the relevant parts of cells, the biochemical operations they performed, and the way in which these parts and operations were organised to accomplish important functions. Cell biology was a revolutionary science but in this book it also provides fuel for yet another revolution, one that focuses on (...)
    Direct download  
     
    Export citation  
     
    Bookmark   118 citations  
  17. Philosophy of Mind: An Overview for Cognitive Science.William Bechtel - 1988 - Hillsdale, N.J.: Lawrence Erlbaum.
    Specifically designed to make the philosophy of mind intelligible to those not trained in philosophy, this book provides a concise overview for students and researchers in the cognitive sciences. Emphasizing the relevance of philosophical work to investigations in other cognitive sciences, this unique text examines such issues as the meaning of language, the mind-body problem, the functionalist theories of cognition, and intentionality. As he explores the philosophical issues, Bechtel draws connections between philosophical views and theoretical and experimental work in such (...)
  18.  29
    Connectionism and the Mind.William Bechtel & Adele Abrahamsen - 1991 - Wiley-Blackwell.
    Something remarkable is happening in the cognitive sciences. After a quarter of a century of cognitive models that were inspired by the metaphor of the digital computer, the newest cognitive models are inspired by the properties of the brain itself. Variously referred to as connectionist, parallel distributed processing, or neutral network models, they explore the idea that complex intellectual operations can be carried out by large networks of simple, neuron-like units. The units themselves are identical, very low-level and 'stupid'. Intelligent (...)
    Direct download  
     
    Export citation  
     
    Bookmark   95 citations  
  19. Discovering Cell Mechanisms: The Creation of Modern Cell Biology.William Bechtel - 2007 - Journal of the History of Biology 40 (1):185-187.
    Between 1940 and 1970 pioneers in the new field of cell biology discovered the operative parts of cells and their contributions to cell life. They offered mechanistic accounts that explained cellular phenomena by identifying the relevant parts of cells, the biochemical operations they performed, and the way in which these parts and operations were organised to accomplish important functions. Cell biology was a revolutionary science but in this book it also provides fuel for yet another revolution, one that focuses on (...)
     
    Export citation  
     
    Bookmark   151 citations  
  20.  22
    Figuring out what is happening: the discovery of two electrophysiological phenomena.William Bechtel & Richard Vagnino - 2022 - History and Philosophy of the Life Sciences 44 (2):1-36.
    Research devoted to characterizing phenomena is underappreciated in philosophical accounts of scientific inquiry. This paper develops a diachronic analysis of research over 100 years that led to the recognition of two related electrophysiological phenomena, the membrane potential and the action potential. A diachronic perspective allows for reconciliation of two threads in philosophical discussions of phenomena—Hacking’s treatment of phenomena as manifest in laboratory settings and Bogen and Woodward’s construal of phenomena as regularities in the world. The diachronic analysis also reveals the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Being Emergence vs. Pattern Emergence: Complexity, Control, and Goal-Directedness in Biological Systems.Jason Winning & William Bechtel - 2018 - In Sophie Gibb, Robin Findlay Hendry & Tom Lancaster (eds.), The Routledge Handbook of Philosophy of Emergence. New York: Routledge. pp. 134-144.
    Emergence is much discussed by both philosophers and scientists. But, as noted by Mitchell (2012), there is a significant gulf; philosophers and scientists talk past each other. We contend that this is because philosophers and scientists typically mean different things by emergence, leading us to distinguish being emergence and pattern emergence. While related to distinctions offered by others between, for example, strong/weak emergence or epistemic/ontological emergence (Clayton, 2004, pp. 9–11), we argue that the being vs. pattern distinction better captures what (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  22.  50
    Levels in Biological Organisms: Hierarchy of Production Mechanisms, Heterarchy of Control Mechanisms.William Bechtel - 2022 - The Monist 105 (2):156-174.
    Among the notions of levels invoked in accounts of biological phenomena, I focus on two: levels of production mechanisms and levels of control mechanisms. I argue that these two notions of level exhibit different characteristics: production mechanisms are organized hierarchically while control mechanisms are often organized heterarchically. I illustrate the differences in these modes of organization by examining production and control mechanisms involved in cell division in Escherichia coli and in circulation of blood in mammals. I conclude by exploring how (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Explicating Top-­‐Down Causation Using Networks and Dynamics.William Bechtel - 2017 - Philosophy of Science 84 (2):253-274.
    In many fields in the life sciences investigators refer to downward or top-down causal effects. Craver and Bechtel defended the view that such cases should be understood in terms of a constitution relation between levels in a mechanism and causation as solely an intra-level relation. Craver and Bechtel, however, provided insufficient specification as to when entities constitute a higher-level mechanism. In this paper I appeal to graph-theoretic representations of networks that are now widely employed in systems biology and neuroscience to (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  24. The Non-­‐Redundant Contributions of Marr’s Three Levels of Analysis for Explaining Information Processing Mechanisms.William Bechtel & Oron Shagrir - 2015 - Topics in Cognitive Science 7 (2):312-322.
    Are all three of Marr's levels needed? Should they be kept distinct? We argue for the distinct contributions and methodologies of each level of analysis. It is important to maintain them because they provide three different perspectives required to understand mechanisms, especially information-processing mechanisms. The computational perspective provides an understanding of how a mechanism functions in broader environments that determines the computations it needs to perform. The representation and algorithmic perspective offers an understanding of how information about the environment is (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   35 citations  
  25. Investigating neural representations: the tale of place cells.William Bechtel - 2016 - Synthese 193 (5):1287-1321.
    While neuroscientists often characterize brain activity as representational, many philosophers have construed these accounts as just theorists’ glosses on the mechanism. Moreover, philosophical discussions commonly focus on finished accounts of explanation, not research in progress. I adopt a different perspective, considering how characterizations of neural activity as representational contributes to the development of mechanistic accounts, guiding the investigations neuroscientists pursue as they work from an initial proposal to a more detailed understanding of a mechanism. I develop one illustrative example involving (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   43 citations  
  26. Rethinking Causality in Biological and Neural Mechanisms: Constraints and Control.Jason Winning & William Bechtel - 2018 - Minds and Machines 28 (2).
    Existing accounts of mechanistic causation are not suited for understanding causation in biological and neural mechanisms because they do not have the resources to capture the unique causal structure of control heterarchies. In this paper, we provide a new account on which the causal powers of mechanisms are grounded by time-dependent, variable constraints. Constraints can also serve as a key bridge concept between the mechanistic approach to explanation and underappreciated work in theoretical biology that sheds light on how biological systems (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  27.  22
    Connectionism and the Mind: Parallel Processing, Dynamics, and Evolution in Networks.William Bechtel & Adele Abrahamsen - 2002 - Wiley-Blackwell.
    Connectionism and the Mind provides a clear and balanced introduction to connectionist networks and explores theoretical and philosophical implications. Much of this discussion from the first edition has been updated, and three new chapters have been added on the relation of connectionism to recent work on dynamical systems theory, artificial life, and cognitive neuroscience. Read two of the sample chapters on line: Connectionism and the Dynamical Approach to Cognition: http://www.blackwellpublishing.com/pdf/bechtel.pdf Networks, Robots, and Artificial Life: http://www.blackwellpublishing.com/pdf/bechtel2.pdf.
    Direct download  
     
    Export citation  
     
    Bookmark   36 citations  
  28. Mechanism and Biological Explanation.William Bechtel - 2011 - Philosophy of Science 78 (4):533-557.
    This article argues that the basic account of mechanism and mechanistic explanation, involving sequential execution of qualitatively characterized operations, is itself insufficient to explain biological phenomena such as the capacity of living organisms to maintain themselves as systems distinct from their environment. This capacity depends on cyclic organization, including positive and negative feedback loops, which can generate complex dynamics. Understanding cyclically organized mechanisms with complex dynamics requires coordinating research directed at decomposing mechanisms into parts and operations with research using computational (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   124 citations  
  29. Multiple Realizability Revisited: Linking Cognitive and Neural States.William Bechtel - 1999 - Philosophy of Science 66 (2):175-207.
    The claim of the multiple realizability of mental states by brain states has been a major feature of the dominant philosophy of mind of the late 20th century. The claim is usually motivated by evidence that mental states are multiply realized, both within humans and between humans and other species. We challenge this contention by focusing on how neuroscientists differentiate brain areas. The fact that they rely centrally on psychological measures in mapping the brain and do so in a comparative (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   197 citations  
  30. Dynamic mechanistic explanation: computational modeling of circadian rhythms as an exemplar for cognitive science.William Bechtel & Adele Abrahamsen - 2010 - Studies in History and Philosophy of Science Part A 41 (3):321-333.
    Two widely accepted assumptions within cognitive science are that (1) the goal is to understand the mechanisms responsible for cognitive performances and (2) computational modeling is a major tool for understanding these mechanisms. The particular approaches to computational modeling adopted in cognitive science, moreover, have significantly affected the way in which cognitive mechanisms are understood. Unable to employ some of the more common methods for conducting research on mechanisms, cognitive scientists’ guiding ideas about mechanism have developed in conjunction with their (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   119 citations  
  31.  46
    Philosophy of Neuroscience.William Bechtel & Linus Ta-Lun Huang - 2022 - Cambridge: Cambridge University Press.
    This Element provides a comprehensive introduction to philosophy of neuroscience. It covers such topics as how neuroscientists procure knowledge, including not just research techniques but the use of various model organisms. It presents examples of knowledge acquired in neuroscience that are then employed to discuss more philosophical topics such as the nature of explanations developed in neuroscience, the different conception of levels employed in discussions of neuroscience, and the invocation of representations in neuroscience explanations. The text emphasizes the importance of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  32.  75
    Imagining Mechanisms with Diagrams.Benjamin Sheredos & William Bechtel - 2019 - In Arnon Levy & Peter Godfrey-Smith (eds.), The Scientific Imagination. New York, US: Oup Usa.
    Some proponents of mechanistic explanation downplay the significance of how-possibly explanations. We argue that developing accounts of mechanisms that could explain a phenomenon is an important aspect of scientific reasoning, one that involves imagination. Although appeals to imagination may seem to obscure the process of reasoning, we illustrate how, by examining diagrams we can gain insights into the construction of mechanistic explanations.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  33. Discovering Complexity.William Bechtel, Robert C. Richardson & Scott A. Kleiner - 1996 - History and Philosophy of the Life Sciences 18 (3):363-382.
  34.  77
    Can mechanistic explanation be reconciled with scale-free constitution and dynamics?William Bechtel - 2015 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 53:84-93.
  35. Mental mechanisms: Philosophical perspectives on the sciences of cognition and the brain.William P. Bechtel - manuscript
    1. The Naturalistic Turn in Philosophy of Science 2. The Framework of Mechanistic Explanation: Parts, Operations, and Organization 3. Representing and Reasoning About Mechanisms 4. Mental Mechanisms: Mechanisms that Process Information 5. Discovering Mental Mechanisms 6 . Summary.
     
    Export citation  
     
    Bookmark   93 citations  
  36.  59
    Marr’s Computational Level and Delineating Phenomena.Oron Shagrir & William Bechtel - unknown
    A key component of scientific inquiry, especially inquiry devoted to developing mechanistic explanations, is delineating the phenomenon to be explained. The task of delineating phenomena, however, has not been sufficiently analyzed, even by the new mechanistic philosophers of science. We contend that Marr’s characterization of what he called the computational level provides a valuable resource for understanding what is involved in delineating phenomena. Unfortunately, the distinctive feature of Marr’s computational level, his dual emphasis on both what is computed and why (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  37.  43
    Connectionism and the Mind: an Introduction to Parallel Processing in Networks.David Pickles, William Bechtel & Adele Abrahamson - 1992 - Philosophical Quarterly 42 (166):101.
  38. How Can Philosophy Be a True Cognitive Science Discipline?William Bechtel - 2010 - Topics in Cognitive Science 2 (3):357-366.
    Although philosophy has been only a minor contributor to cognitive science to date, this paper describes two projects in naturalistic philosophy of mind and one in naturalistic philosophy of science that have been pursued during the past 30 years and that can make theoretical and methodological contributions to cognitive science. First, stances on the mind–body problem (identity theory, functionalism, and heuristic identity theory) are relevant to cognitive science as it negotiates its relation to neuroscience and cognitive neuroscience. Second, analyses of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  39. Looking down, around, and up: Mechanistic explanation in psychology.William Bechtel - 2009 - Philosophical Psychology 22 (5):543-564.
    Accounts of mechanistic explanation have emphasized the importance of looking down—decomposing a mechanism into its parts and operations. Using research on visual processing as an exemplar, I illustrate how productive such research has been. But once multiple components of a mechanism have been identified, researchers also need to figure out how it is organized—they must look around and determine how to recompose the mechanism. Although researchers often begin by trying to recompose the mechanism in terms of sequential operations, they frequently (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   69 citations  
  40.  57
    Analysing Network Models to Make Discoveries about Biological Mechanisms.William Bechtel - 2019 - British Journal for the Philosophy of Science 70 (2):459-484.
    Systems biology provides alternatives to the strategies to developing mechanistic explanations traditionally pursued in cell and molecular biology and much discussed in accounts of mechanistic explanation. Rather than starting by identifying a mechanism for a given phenomenon and decomposing it, systems biologists often start by developing cell-wide networks of detected connections between proteins or genes and construe clusters of highly interactive components as potential mechanisms. Using inference strategies such as ‘guilt-by-association’, researchers advance hypotheses about functions performed of these mechanisms. I (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  41. Representations and cognitive explanations: Assessing the dynamicist challenge in cognitive science.William Bechtel - 1998 - Cognitive Science 22 (3):295-317.
    Advocates of dynamical systems theory (DST) sometimes employ revolutionary rhetoric. In an attempt to clarify how DST models differ from others in cognitive science, I focus on two issues raised by DST: the role for representations in mental models and the conception of explanation invoked. Two features of representations are their role in standing-in for features external to the system and their format. DST advocates sometimes claim to have repudiated the need for stand-ins in DST models, but I argue that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   85 citations  
  42. Abstraction and the Organization of Mechanisms.Arnon Levy & William Bechtel - 2013 - Philosophy of Science 80 (2):241-261.
    Proponents of mechanistic explanation all acknowledge the importance of organization. But they have also tended to emphasize specificity with respect to parts and operations in mechanisms. We argue that in understanding one important mode of organization—patterns of causal connectivity—a successful explanatory strategy abstracts from the specifics of the mechanism and invokes tools such as those of graph theory to explain how mechanisms with a particular mode of connectivity will behave. We discuss the connection between organization, abstraction, and mechanistic explanation and (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   149 citations  
  43. Levels of description and explanation in cognitive science.William Bechtel - 1994 - Minds and Machines 4 (1):1-25.
    The notion of levels has been widely used in discussions of cognitive science, especially in discussions of the relation of connectionism to symbolic modeling of cognition. I argue that many of the notions of levels employed are problematic for this purpose, and develop an alternative notion grounded in the framework of mechanistic explanation. By considering the source of the analogies underlying both symbolic modeling and connectionist modeling, I argue that neither is likely to provide an adequate analysis of processes at (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   72 citations  
  44.  72
    Attributing responsibility to computer systems1,.William Bechtel - 1985 - Metaphilosophy 16 (4):296-306.
  45. Mechanism, autonomy and biological explanation.Leonardo Bich & William Bechtel - 2021 - Biology and Philosophy 36 (6):1-27.
    The new mechanists and the autonomy approach both aim to account for how biological phenomena are explained. One identifies appeals to how components of a mechanism are organized so that their activities produce a phenomenon. The other directs attention towards the whole organism and focuses on how it achieves self-maintenance. This paper discusses challenges each confronts and how each could benefit from collaboration with the other: the new mechanistic framework can gain by taking into account what happens outside individual mechanisms, (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  46. Philosophy and the Neurosciences: A Reader.William P. Bechtel, Pete Mandik, Jennifer Mundale & Robert S. Stufflebeam (eds.) - 2001 - Malden, Mass.: Blackwell.
    2. Daugman, J. G. Brain metaphor and brain theory 3. Mundale, J. Neuroanatomical Foundations of Cognition: Connecting the Neuronal Level with the Study of Higher Brain Areas.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   36 citations  
  47.  49
    Integrating Scientific Disciplines.William Bechtel (ed.) - 1986 - University of Chicago Press.
  48. Complex biological mechanisms: Cyclic, oscillatory, and autonomous.William Bechtel & Adele Abrahamsen - unknown
    The mechanistic perspective has dominated biological disciplines such as biochemistry, physiology, cell and molecular biology, and neuroscience, especially during the 20th century. The primary strategy is reductionist: organisms are to be decomposed into component parts and operations at multiple levels. Researchers adopting this perspective have generated an enormous body of information about the mechanisms of life at scales ranging from the whole organism down to genetic and other molecular operations.
     
    Export citation  
     
    Bookmark   42 citations  
  49.  36
    The Importance of Constraints and Control in Biological Mechanisms: Insights from Cancer Research.William Bechtel - 2018 - Philosophy of Science 85 (4):573-593.
    Research on diseases such as cancer reveals that primary mechanisms, which have been the focus of study by the new mechanists in philosophy of science, are often subject to control by other mechanisms. Cancer cells employ the same primary mechanisms as healthy cells but control them differently. I use cancer research to highlight just how widespread control is in individual cells. To provide a framework for understanding control, I reconceptualize mechanisms as imposing constraints on flows of free energy, with control (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  50. Top-down causation without top-down causes.Carl F. Craver & William Bechtel - 2007 - Biology and Philosophy 22 (4):547-563.
    We argue that intelligible appeals to interlevel causes (top-down and bottom-up) can be understood, without remainder, as appeals to mechanistically mediated effects. Mechanistically mediated effects are hybrids of causal and constitutive relations, where the causal relations are exclusively intralevel. The idea of causation would have to stretch to the breaking point to accommodate interlevel causes. The notion of a mechanistically mediated effect is preferable because it can do all of the required work without appealing to mysterious interlevel causes. When interlevel (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   238 citations  
1 — 50 / 1000