Results for 'Completeness of quantum mechanics'

1000+ found
Order:
  1.  17
    On the completeness of quantum mechanics.Jeffrey Bub - 1973 - In C. A. Hooker (ed.), Contemporary Research in the Foundations and Philosophy of Quantum Theory. Boston: D. Reidel. pp. 1--65.
  2.  9
    Relativistic Pilot-Wave Theories as the Rational Completion of Quantum Mechanics and Relativity.Valia Allori - 2023 - In Andrea Oldofredi (ed.), Guiding Waves In Quantum Mechanics: 100 Years of de Broglie-Bohm Pilot-Wave Theory. Oxford University Press.
    Einstein thought that quantum mechanics was incomplete because it was nonlocal. In this paper I argue instead that quantum theory is incomplete, even if it is nonlocal, and that relativity is incomplete because its minimal spatiotemporal structure cannot naturally accommodate such nonlocality. So, I show that relativistic pilot-wave theories are the rational completion of quantum mechanics as well as relativity: they provide a spatiotemporal ontology of particles, as well as a spatiotemporal structure able to explain (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  3.  2
    A Tentative Completion of Quantum Mechanics.Jürg Fröhlich, Zhou Gang & Alessandro Pizzo - 2024 - In Angelo Bassi, Sheldon Goldstein, Roderich Tumulka & Nino Zanghi (eds.), Physics and the Nature of Reality: Essays in Memory of Detlef Dürr. Springer. pp. 151-165.
    We review a proposal of how to complete non-relativistic Quantum Mechanics to a physically meaningful, mathematically precise and logically coherent theory. This proposal has been dubbed ETH-Approach to Quantum Mechanics, “E” standing for “Events,” “T” for “Trees,” and “H” for “Histories.” The ETH-Approach supplies the last one of three pillars Quantum Mechanics can be constructed upon in such a way that its foundations are solid and stable. Two of these pillars are well known. The (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  4.  15
    Incompatibility of standard completeness and quantum mechanics.Carsten Held - unknown
    The completeness of quantum mechanics is generally interpreted to be or entail the following conditional statement ): If a QM system S is in a pure non-eigenstate of observable A, then S does not have value ak of A at t. QM itself can be assumed to contain two elements: a formula generating probabilities; Hamiltonians that can be time-dependent due to a time-dependent external potential. It is shown that, given and, QM and SC are incompatible. Hence, SC (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5.  64
    Did bohr succeed in defending the completeness of quantum mechanics?Kunihisa Morita - 2020 - Principia: An International Journal of Epistemology 24 (1):51-63.
    This study posits that Bohr failed to defend the completeness of the quantum mechanical description of physical reality against Einstein–Podolsky–Rosen’s paper. Although there are many papers in the literature that focus on Bohr’s argument in his reply to the EPR paper, the purpose of the current paper is not to clarify Bohr’s argument. Instead, I contend that regardless of which interpretation of Bohr’s argument is correct, his defense of the quantum mechanical description of physical reality remained incomplete. (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6.  16
    Can Transactional Description of Quantum-Mechanical Reality be Considered Complete?Peter J. Lewis - unknown
    The Transactional Interpretation of quantum mechanics is a promising way of fulfilling Einstein’s vision of a completed quantum mechanics. However, it has received forceful criticism from Maudlin. Indeed, I shall argue that the force of Maudlin’s criticisms has been underestimated, and that none of the extant responses are adequate. An adequate response, I contend, requires reconceptualizing the kinds of explanations the Transactional Interpretation gives. I sketch such a reinterpretation and argue that it does not fall prey (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  7.  46
    Quantum Interference, Quantum Theory of Measurement, and (In)completeness of Quantum Mechanics.Mirjana Božić & Zvonko Marić - 1998 - Foundations of Physics 28 (3):415-427.
    The new techniques and ideas in quantum interferometry with neutrons, photons, atoms, electrons, and Bose condensates that fluorished in the last two decades have influenced in a decisive way the thinking and the research in the foundations and interpretation of quantum mechanics. The controversies existing among different schools on the reality of matter waves of quantum theory, the postulates of quantum measurement theory, and the (in)completeness of quantum mechanics have to be approached (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  8. Two Strategies to Infinity: Completeness and Incompleteness. The Completeness of Quantum Mechanics.Vasil Penchev - 2020 - High Performance Computing eJournal 12 (11):1-8.
    Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9. On the Metaphysics of Quantum Mechanics.Valia Allori - 2013 - In Soazig Lebihan (ed.), La philosophie de la physique: d'aujourd'hui a demain. Editions Vuibert.
    What is quantum mechanics about? The most natural way to interpret quantum mechanics realistically as a theory about the world might seem to be what is called wave function ontology: the view according to which the wave function mathematically represents in a complete way fundamentally all there is in the world. Erwin Schroedinger was one of the first proponents of such a view, but he dismissed it after he realized it led to macroscopic superpositions (if the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  10. Einstein’s Boxes: Incompleteness of Quantum Mechanics Without a Separation Principle.Carsten Held - 2015 - Foundations of Physics 45 (9):1002-1018.
    Einstein made several attempts to argue for the incompleteness of quantum mechanics, not all of them using a separation principle. One unpublished example, the box parable, has received increased attention in the recent literature. Though the example is tailor-made for applying a separation principle and Einstein indeed applies one, he begins his discussion without it. An analysis of this first part of the parable naturally leads to an argument for incompleteness not involving a separation principle. I discuss the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?Albert Einstein, Boris Podolsky & Nathan Rosen - 1935 - Physical Review (47):777-780.
  12.  21
    Foundation of Quantum Mechanics: Once Again.Paul Drechsel - 2019 - Foundations of Science 24 (2):375-389.
    Brukner and Dakić proposed a very simple axiom system as a foundation for quantum theory. It implies the qubit and quantum entanglement. Because this axiom system aims at the core of our understanding of nature, it must be brought to the forum of the philosophy of nature. For philosophical reasons, a completely denied champion of quantum theory, imaginarity i, is added into this axiom system. In relation to Bell’s inequality, this leads to a deeper ‘philosophical’ understanding of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  13.  61
    Completeness of quantum logic.E. -W. Stachow - 1976 - Journal of Philosophical Logic 5 (2):237 - 280.
    This paper is based on a semantic foundation of quantum logic which makes use of dialog-games. In the first part of the paper the dialogic method is introduced and under the conditions of quantum mechanical measurements the rules of a dialog-game about quantum mechanical propositions are established. In the second part of the paper the quantum mechanical dialog-game is replaced by a calculus of quantum logic. As the main part of the paper we show that (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  14. Axiomatic Quantum Mechanics and Completeness.Carsten Held - 2008 - Foundations of Physics 38 (8):707-732.
    The standard axiomatization of quantum mechanics (QM) is not fully explicit about the role of the time-parameter. Especially, the time reference within the probability algorithm (the Born Rule, BR) is unclear. From a probability principle P1 and a second principle P2 affording a most natural way to make BR precise, a logical conflict with the standard expression for the completeness of QM can be derived. Rejecting P1 is implausible. Rejecting P2 leads to unphysical results and to a (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  15.  54
    Schrödinger's philosophy of quantum mechanics.Michel Bitbol - 1998 - Boston: Kluwer Academic Publishers.
    This book is the final outcome of two projects. My first project was to publish a set of texts written by Schrodinger at the beginning of the 1950's for his seminars and lectures at the Dublin Institute for Advanced Studies. These almost completely forgotten texts contained important insights into the interpretation of quantum mechanics, and they provided several ideas which were missing or elusively expressed in SchrOdinger's published papers and books of the same period. However, they were likely (...)
    Direct download  
     
    Export citation  
     
    Bookmark   18 citations  
  16.  20
    The Quantum Mechanics of Minds and Worlds.Jeffrey A. Barrett - 1999 - Oxford, GB: Oxford University Press UK.
    Jeffrey Barrett presents the most comprehensive study yet of a problem that has puzzled physicists and philosophers since the 1930s. The standard theory of quantum mechanics is in one sense the most successful physical theory ever, predicting the behaviour of the basic constituents of all physical things; no other theory has ever made such accurate empirical predictions. However, if one tries to understand the theory as providing a complete and accurate framework for the description of the behaviour of (...)
  17. Philosophical Foundations of Quantum Mechanics.Alireza Mansouri - 2016 - Tehran: Nashre Ney.
    The revolution brought about by quantum mechanics in the early 20th century was nothing short of remarkable. It shattered the foundational principles of classical physics, giving rise to a plethora of controversial and intriguing conceptual questions. Questions that still perplex and confound the scientific community today. Is the quantum mechanical description of physical reality complete? Are the objects of nature truly inseparable? And most importantly, do objects not have a specific position before measurement, and are there non-causal (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18.  48
    Probability in modal interpretations of quantum mechanics.Dennis Dieks - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):292-310.
    Modal interpretations have the ambition to construe quantum mechanics as an objective, man-independent description of physical reality. Their second leading idea is probabilism: quantum mechanics does not completely fix physical reality but yields probabilities. In working out these ideas an important motif is to stay close to the standard formalism of quantum mechanics and to refrain from introducing new structure by hand. In this paper we explain how this programme can be made concrete. In (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  19. Is the Statistical Interpretation of Quantum Mechanics ψ-Ontic or ψ-Epistemic?Mario Hubert - 2023 - Foundations of Physics 53 (16):1-23.
    The ontological models framework distinguishes ψ-ontic from ψ-epistemic wave- functions. It is, in general, quite straightforward to categorize the wave-function of a certain quantum theory. Nevertheless, there has been a debate about the ontological status of the wave-function in the statistical interpretation of quantum mechanics: is it ψ-epistemic and incomplete or ψ-ontic and complete? I will argue that the wave- function in this interpretation is best regarded as ψ-ontic and incomplete.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Probability in modal interpretations of quantum mechanics.Dennis Dieks - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):292-310.
    Modal interpretations have the ambition to construe quantum mechanics as an objective, man-independent description of physical reality. Their second leading idea is probabilism: quantum mechanics does not completely fix physical reality but yields probabilities. In working out these ideas an important motif is to stay close to the standard formalism of quantum mechanics and to refrain from introducing new structure by hand. In this paper we explain how this programme can be made concrete. In (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  21. Can Quantum-Mechanical Description of Physical Reality be Considered Complete?Niels Bohr - 1935 - Physical Review 48 (696--702):696--702.
  22. The suggestive properties of quantum mechanics without the collapse postulate.Jeffrey A. Barrett - 1994 - Erkenntnis 41 (2):233 - 252.
    Everett proposed resolving the quantum measurement problem by dropping the nonlinear collapse dynamics from quantum mechanics and taking what is left as a complete physical theory. If one takes such a proposal seriously, then the question becomes how much of the predictive and explanatory power of the standard theory can one recover without the collapse postulate and without adding anything else. Quantum mechanics without the collapse postulate has several suggestive properties, which we will consider in (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  23. Incompleteness, Nonlocality, and Realism: A Prolegomenon to the Philosophy of Quantum Mechanics.Michael Redhead - 1987 - New York: Oxford University Press.
    Aiming to unravel the mystery of quantum mechanics, this book is concerned with questions about action-at-a-distance, holism, and whether quantum mechanics gives a complete account of microphysical reality. With rigorous arguments and clear thinking, the author provides an introduction to the philosophy of physics.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   158 citations  
  24.  37
    Tabletop Experiments for Quantum Gravity Are Also Tests of the Interpretation of Quantum Mechanics.Emily Adlam - 2022 - Foundations of Physics 52 (5):1-43.
    Recently there has been a great deal of interest in tabletop experiments intended to exhibit the quantum nature of gravity by demonstrating that it can induce entanglement. In order to evaluate these experiments, we must determine if there is any interesting class of possibilities that will be convincingly ruled out if it turns out that gravity can indeed induce entanglement. In particular, since one argument for the significance of these experiments rests on the claim that they demonstrate the existence (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  23
    A Local Interpretation of Quantum Mechanics.Carlos Lopez - 2016 - Foundations of Physics 46 (4):484-504.
    A local interpretation of quantum mechanics is presented. Its main ingredients are: first, a label attached to one of the “virtual” paths in the path integral formalism, determining the output for measurement of position or momentum; second, a mathematical model for spin states, equivalent to the path integral formalism for point particles in space time, with the corresponding label. The mathematical machinery of orthodox quantum mechanics is maintained, in particular amplitudes of probability and Born’s rule; therefore, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26. The Indeterminist Objectivity of Quantum Mechanics Versus the Determinist Subjectivity of Classical Physics.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (18):1-5.
    Indeterminism of quantum mechanics is considered as an immediate corollary from the theorems about absence of hidden variables in it, and first of all, the Kochen – Specker theorem. The base postulate of quantum mechanics formulated by Niels Bohr that it studies the system of an investigated microscopic quantum entity and the macroscopic apparatus described by the smooth equations of classical mechanics by the readings of the latter implies as a necessary condition of (...) mechanics the absence of hidden variables, and thus, quantum indeterminism. Consequently, the objectivity of quantum mechanics and even its possibility and ability to study its objects as they are by themselves imply quantum indeterminism. The so-called free-will theorems in quantum mechanics elucidate that the “valuable commodity” of free will is not a privilege of the experimenters and human beings, but it is shared by anything in the physical universe once the experimenter is granted to possess free will. The analogical idea, that e.g. an electron might possess free will to “decide” what to do, scandalized Einstein forced him to exclaim (in a letter to Max Born in 2016) that he would be а shoemaker or croupier rather than a physicist if this was true. Anyway, many experiments confirmed the absence of hidden variables and thus quantum indeterminism in virtue of the objectivity and completeness of quantum mechanics. Once quantum mechanics is complete and thus an objective science, one can ask what this would mean in relation to classical physics and its objectivity. In fact, it divides disjunctively what possesses free will from what does not. Properly, all physical objects belong to the latter area according to it, and their “behavior” is necessary and deterministic. All possible decisions, on the contrary, are concentrated in the experimenters (or human beings at all), i.e. in the former domain not intersecting the latter. One may say that the cost of the determinism and unambiguous laws of classical physics, is the indeterminism and free will of the experimenters and researchers (human beings) therefore necessarily being out of the scope and objectivity of classical physics. This is meant as the “deterministic subjectivity of classical physics” opposed to the “indeterminist objectivity of quantum mechanics”. (shrink)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  27. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  28.  97
    The false promise of quantum mechanics.Timothy Sansbury - 2007 - Zygon 42 (1):111-122.
    The causal indeterminacy suggested by quantum mechanics has led to its being the centerpiece of several proposals for divine action that does not contradict natural laws. However, even if the theoretical concerns about the reality of causal indeterminacy are ignored, quantum-level divine action fails to resolve the problem of ongoing, responsive divine activity. This is because most quantum-level actions require a significant period of time in order to reach macroscopic levels whether via chaotic amplification or complete (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  29. Non-locality and Gauge Freedom in Deutsch and Hayden’s Formulation of Quantum Mechanics.David Wallace & Christopher G. Timpson - 2007 - Foundations of Physics 37 (6):951-955.
    Deutsch and Hayden have proposed an alternative formulation of quantum mechanics which is completely local. We argue that their proposal must be understood as having a form of ‘gauge freedom’ according to which mathematically distinct states are physically equivalent. Once this gauge freedom is taken into account, their formulation is no longer local.
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  30.  20
    The Role of Quantum Mechanics in Understanding the Phenomenon of Consciousness.Igor V. Cherepanov & Черепанов Игорь Владимирович - 2022 - RUDN Journal of Philosophy 26 (4):770-789.
    The article analyzes the effectiveness of quantum theories of mental experience in relation to two ontological problems - the problem of the existence of consciousness in the material world and the problem of the interaction of consciousness and body. A critical analysis of the quantum theories of consciousness by Penrose-Hameroff, M. Tegmark, G. Stapp, M. Fischer and M.B. Mensky shows that they fail to fully explain how complex physical systems generate mental experience without violating the principle of causal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  31. How Quantum Mechanics Can Consistently Describe the Use of Itself.Dustin Lazarovici & Mario Hubert - 2019 - Scientific Reports 470 (9):1-8.
    We discuss the no-go theorem of Frauchiger and Renner based on an "extended Wigner's friend" thought experiment which is supposed to show that any single-world interpretation of quantum mechanics leads to inconsistent predictions if it is applicable on all scales. We show that no such inconsistency occurs if one considers a complete description of the physical situation. We then discuss implications of the thought experiment that have not been clearly addressed in the original paper, including a tension between (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  32. The meaning of the wave function: in search of the ontology of quantum mechanics.Shan Gao - 2017 - New York, NY, USA: Cambridge University Press.
    The meaning of the wave function has been a hot topic of debate since the early days of quantum mechanics. Recent years have witnessed a growing interest in this long-standing question. Is the wave function ontic, directly representing a state of reality, or epistemic, merely representing a state of knowledge, or something else? If the wave function is not ontic, then what, if any, is the underlying state of reality? If the wave function is indeed ontic, then exactly (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  33.  80
    Should quantum mechanical description of physical reality be considered complete?L. C. B. Ryff - 1990 - Foundations of Physics 20 (9):1061-1078.
    A brief and critical survey of wave-particle duality and nonlocality aspects of light is presented. A recent attempt to establish a reasonable framework for nonlocal realistic theories based on physically sound arguments and a proposed experiment to decide between such theories and the usual interpretation of quantum mechanical formalism are reviewed. It is shown that a nonlocal realistic approach may raise some new questions which could be answered by means of a program based on a sequence of experiments.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34.  83
    Book Review: The Historical Development of Quantum Theory, Volume 6: The Completion of Quantum Mechanics 1926–1941. By Jagdish Mehra and Helmut Rechenberg. Springer, New York, 2000, xxxvi + 1612 pp., $149.00 (hardcover). [REVIEW]Helge Kragh - 2002 - Foundations of Physics 32 (1):187-189.
  35.  40
    Book Review: The Historical Development of Quantum Theory, Volume 6: The Completion of Quantum Mechanics 1926–1941. By Jagdish Mehra and Helmut Rechenberg. Springer, New York, 2000, xxxvi + 1612 pp., $149.00 (hardcover). [REVIEW]Helge Kragh - 2002 - Foundations of Physics 32 (1):187-189.
  36. Can Quantum-Mechanical Description of Physical Reality Be Considered Correct?Gilles Brassard & André Allan Méthot - 2010 - Foundations of Physics 40 (4):463-468.
    In an earlier paper written in loving memory of Asher Peres, we gave a critical analysis of the celebrated 1935 paper in which Einstein, Podolsky and Rosen (EPR) challenged the completeness of quantum mechanics. There, we had pointed out logical shortcomings in the EPR paper. Now, we raise additional questions concerning their suggested program to find a theory that would “provide a complete description of the physical reality”. In particular, we investigate the extent to which the EPR (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  37. Does the Minimal Statistical Interpretation of Quantum Mechanics Resolve the Measurement Problem?Nicholas Maxwell - 1975 - Methodology and Science 8:84-101.
    It is argued that the so-called minimal statistical interpretation of quantum mechanics does not completely resolve the measurement problem in that this view is unable to show that quantjum mechanics can dispense with classical physics when it comes to a treatment of the measuring interaction. It is suggested that the view that quantum mechanics applies to individual systems should not be too hastily abandoned, in that this view gives perhaps the best hope of leading to (...)
     
    Export citation  
     
    Bookmark   5 citations  
  38. Against the 'no-go' philosophy of quantum mechanics.Federico Laudisa - 2014 - European Journal for Philosophy of Science 4 (1):1-17.
    In the area of the foundations of quantum mechanics a true industry appears to have developed in the last decades, with the aim of proving as many results as possible concerning what there cannot be in the quantum realm. In principle, the significance of proving ‘no-go’ results should consist in clarifying the fundamental structure of the theory, by pointing out a class of basic constraints that the theory itself is supposed to satisfy. In the present paper I (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  39.  30
    Towards a Constructive Foundation of Quantum Mechanics.Walter Smilga - 2017 - Foundations of Physics 47 (1):149-159.
    I describe a constructive foundation for quantum mechanics, based on the discreteness of the degrees of freedom of quantum objects and on the Principle of Relativity. Taking Einstein’s historical construction of Special Relativity as a model, the construction is carried out in close contact with a simple quantum mechanical Gedanken experiment. This leads to the standard axioms of quantum mechanics. The quantum mechanical description is identified as a mathematical tool that allows describing objects, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  40.  43
    A new interpretation of quantum mechanics and its consequences in epistemology.Roland Omnès - 1995 - Foundations of Physics 25 (4):605-629.
    A rather recent interpretation of quantum mechanics, known under the various names of consistent histories, decohering histories, or logical interpretation, has brought interpretation into a standard deductive theory and is now investigated in many places. A key difference with the Copenhagen interpretation is the status of classical physics, now derived completely from quantum principles in both its dynamical and logical aspects. After describing briefly this new interpretation in its essentials, leaving aside technical details, it is shown how (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  94
    On Everett’s Formulation of Quantum Mechanics.Jeffrey A. Barrett - 1997 - The Monist 80 (1):70-96.
    Everett wanted a formulation of quantum mechanics that (i) took the linear dynamics to be a complete and accurate description of the time-evolution of all physical systems and (ii) logically entailed the same subjective appearances predicted by the standard formulation of quantum mechanics. While most everyone would agree with this description of Everett’s project, there is little agreement on exactly how his relative-state formulation was supposed to work. In this paper, I consider two very different readings (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  42.  39
    The Role of Bounded Memory in the Foundations of Quantum Mechanics.Adán Cabello - 2012 - Foundations of Physics 42 (1):68-79.
    If quantum mechanics is correct and there is a finite upper bound for the speed of causal influences (e.g., the speed of light), then quantum mechanics is complete (i.e., it does not admit a more detailed description in terms of hidden variables). Here I show that the conclusion holds if we replace the assumption of bounded velocity by the assumption that there is a finite upper bound to the memory a finite physical system can store (e.g., (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  43.  36
    Indivisibility, Complementarity and Ontology: A Bohrian Interpretation of Quantum Mechanics.Jairo Roldán-Charria - 2014 - Foundations of Physics 44 (12):1336-1356.
    The interpretation of quantum mechanics presented in this paper is inspired by two ideas that are fundamental in Bohr’s writings: indivisibility and complementarity. Further basic assumptions of the proposed interpretation are completeness, universality and conceptual economy. In the interpretation, decoherence plays a fundamental role for the understanding of measurement. A general and precise conception of complementarity is proposed. It is fundamental in this interpretation to make a distinction between ontological reality, constituted by everything that does not depend (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Follow the Math!: The Mathematics of Quantum Mechanics as the Mathematics of Set Partitions Linearized to (Hilbert) Vector Spaces.David Ellerman - 2022 - Foundations of Physics 52 (5):1-40.
    The purpose of this paper is to show that the mathematics of quantum mechanics is the mathematics of set partitions linearized to vector spaces, particularly in Hilbert spaces. That is, the math of QM is the Hilbert space version of the math to describe objective indefiniteness that at the set level is the math of partitions. The key analytical concepts are definiteness versus indefiniteness, distinctions versus indistinctions, and distinguishability versus indistinguishability. The key machinery to go from indefinite to (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Ontic structural realism and the interpretation of quantum mechanics.Michael Esfeld - 2013 - European Journal for Philosophy of Science 3 (1):19-32.
    This paper argues that ontic structural realism (OSR) faces a dilemma: either it remains on the general level of realism with respect to the structure of a given theory, but then it is, like epistemic structural realism, only a partial realism; or it is a complete realism, but then it has to answer the question how the structure of a given theory is implemented, instantiated or realized and thus has to argue for a particular interpretation of the theory in question. (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  46. Superstrings and the Foundations of Quantum Mechanics.Gerard ’T. Hooft - 2014 - Foundations of Physics 44 (5):463-471.
    It is put forward that modern elementary particle physics cannot be completely unified with the laws of gravity and general relativity without addressing the question of the ontological interpretation of quantum mechanics itself. The position of superstring theory in this general question is emphasized: superstrings may well form exactly the right mathematical system that can explain how quantum mechanics can be linked to a deterministic picture of our world. Deterministic interpretations of quantum mechanics are (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47. On the nature of quantum mechanics.A. H. Klotz - 1988 - Synthese 77 (2):139 - 193.
    It is argued that the EPR paradox cannot be resolved in the context of quantum mechanics. Bell's theorem is shown to be equivalent to a Belinfante theory of zero type. It is concluded therefore that it cannot have as wide a range of applicability in excluding Hidden Variable Theories as commonly alleged. It follows that standard quantum mechanics should not be regarded as a complete theory in Einstein's sense. Indeed, it is argued that a purely probabilistic (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  31
    Completely Discretized, Finite Quantum Mechanics.Sean M. Carroll - 2023 - Foundations of Physics 53 (6):1-13.
    I propose a version of quantum mechanics featuring a discrete and finite number of states that is plausibly a model of the real world. The model is based on standard unitary quantum theory of a closed system with a finite-dimensional Hilbert space. Given certain simple conditions on the spectrum of the Hamiltonian, Schrödinger evolution is periodic, and it is straightforward to replace continuous time with a discrete version, with the result that the system only visits a discrete (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  49.  35
    Is the Epistemic View of Quantum Mechanics Incomplete?M. Ferrero, D. Salgado & J. L. Sánchez-Gómez - 2004 - Foundations of Physics 34 (12):1993-2003.
    One of the most tantalizing questions about the interpretation of Quantum Theory is the objective vs. subjective meaning of quantum states. Here, by focusing on a typical EPR experiment upon which a selection procedure is performed on one side, we will confront the fully epistemic view of quantum states with its results. Our statement is that such a view cannot be considered complete, although the opposite attitude would also pose well-known problems of interpretation.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  50.  38
    A simple proof that the many-worlds interpretation of quantum mechanics is inconsistent.Shan Gao - unknown
    The many-worlds interpretation of quantum mechanics is based on three key assumptions: the completeness of the physical description by means of the wave function, the linearity of the dynamics for the wave function, and multiplicity. In this paper, I argue that the combination of these assumptions may lead to a contradiction. In order to avoid the contradiction, we must drop one of these key assumptions.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 1000