Here the philosopher and physicist David Z Albert argues, among other things, that the difference between past and future can be understood as a mechanical phenomenon of nature and that quantum mechanics makes it impossible to present the entirety of what can be said about the world as a narrative of “befores” and “afters.”.
The seminal work by one of the most important thinkers of the twentieth century, Physics and Philosophy is Werner Heisenberg's concise and accessible narrative of the revolution in modern physics, in which he played a towering role. The outgrowth of a celebrated lecture series, this book remains as relevant, provocative, and fascinating as when it was first published in 1958. A brilliant scientist whose ideas altered our perception of the universe, Heisenberg is considered the father of quantum (...) class='Hi'>physics; he is most famous for the Uncertainty Principle, which states that quantum particles do not occupy a fixed, measurable position. His contributions remain a cornerstone of contemporary physics theory and application. Book jacket. (shrink)
The _Physics_ is a foundational work of western philosophy, and the crucial one for understanding Aristotle's views on matter, form, essence, causation, movement, space, and time. This richly annotated, scrupulously accurate, and consistent translation makes it available to a contemporary English reader as no other does—in part because it fits together seamlessly with other closely associated works in the New Hackett Aristotle series, such as the _Metaphysics_, _De Anima_, and forthcoming _De Caelo_ and _On Coming to Be and Passing Away_. (...) Eventually the series will include all of Aristotle's works. Sequentially numbered endnotes provide the information most needed at each juncture, while a detailed Index of Terms indicates places where focused discussion of key notions occurs. An illuminating general Introduction describes the book that lies ahead, explaining what sort of work it is and what sorts of evidence it relies on. (shrink)
These articles and speeches by the Nobel Prize-winning physicist date from 1934 to 1958. Rather than expositions on quantum physics, the papers are philosophical in nature, exploring the relevance of atomic physics to many areas of human endeavor. Includes an essay in which Bohr and Einstein discuss quantum and_wave equation theories. 1961 edition.
Presents German physicist Werner Heisenberg's 1958 text in which he discusses the philosophical implications and social consequences of quantum mechanics and other physical theories.
The physics of time asymmetry has never been a single well-defined subject, but more a collection of consistency problems which arise in almost all branches ...
Collaboration on the First Edition of Spacetime Physics began in the mid-1960s when Edwin Taylor took a junior faculty sabbatical at Princeton University where John Wheeler was a professor. The resulting text emphasized the unity of spacetime and those quantities (such as proper time, proper distance, mass) that are invariant, the same for all observers, rather than those quantities (such as space and time separations) that are relative, different for different observers. The book has become a standard introduction to (...) relativity. The Second Edition of Spacetime Physics embodies what the authors have learned during an additional quarter century of teaching and research. They have updated the text to reflect the immense strides in physics during the same period and modernized and increased the number of exercises, for which the First Edition was famous. Enrichment boxes provide expanded coverage of intriguing topics. An enlarged final chapter on general relativity includes new material on gravity waves, black holes, and cosmology. The Second Edition of Spacetime Physics provides a new generation of readers with a deep and simple overview of the principles of relativity. (shrink)
Statistical mechanics is one of the crucial fundamental theories of physics, and in his new book Lawrence Sklar, one of the pre-eminent philosophers of physics, offers a comprehensive, non-technical introduction to that theory and to attempts to understand its foundational elements. Among the topics treated in detail are: probability and statistical explanation, the basic issues in both equilibrium and non-equilibrium statistical mechanics, the role of cosmology, the reduction of thermodynamics to statistical mechanics, and the alleged foundation of the (...) very notion of time asymmetry in the entropic asymmetry of systems in time. The book emphasises the interaction of scientific and philosophical modes of reasoning, and in this way will interest all philosophers of science as well as those in physics and chemistry concerned with philosophical questions. The book could also be read by an informed general reader interested in the foundations of modern science. (shrink)
This report reviews what quantum physics and information theory have to tell us about the age-old question, How come existence? No escape is evident from four conclusions: (1) The world cannot be a giant machine, ruled by any preestablished continuum physical law. (2) There is no such thing at the microscopic level as space or time or spacetime continuum. (3) The familiar probability function or functional, and wave equation or functional wave equation, of standard quantum theory provide mere continuum (...) idealizations and by reason of this circumstance conceal the information-theoretic source from which they derive. (4) No element in the description of physics shows itself as closer to primordial than the elementary quantum phenomenon, that is, the elementary device-intermediated act of posing a yes-no physical question and eliciting an answer or, in brief, the elementary act of observer-participancy. Otherwise stated, every physical quantity, every it, derives its ultimate significance from bits, binary yes-or-no indications, a conclusion which we epitomize in the phrase, it from bit. (shrink)
In 1687 Isaac Newton ushered in a new scientific era in which laws of nature could be used to predict the movements of matter with almost perfect precision. Newton's physics also posed a profound challenge to our self-understanding, however, for the very same laws that keep airplanes in the air and rivers flowing downhill tell us that it is in principle possible to predict what each of us will do every second of our entire lives, given the early conditions (...) of the universe. Can it really be that even while you toss and turn late at night in the throes of an important decision and it seems like the scales of fate hang in the balance, that your decision is a foregone conclusion? Can it really be that everything you have done and everything you ever will do is determined by facts that were in place long before you were born? This problem is one of the staples of philosophical discussion. It is discussed by everyone from freshman in their first philosophy class, to theoretical physicists in bars after conferences. And yet there is no topic that remains more unsettling, and less well understood. If you want to get behind the façade, past the bare statement of determinism, and really try to understand what physics is telling us in its own terms, read this book. The problem of free will raises all kinds of questions. What does it mean to make a decision, and what does it mean to say that our actions are determined? What are laws of nature? What are causes? What sorts of things are we, when viewed through the lenses of physics, and how do we fit into the natural order? Ismael provides a deeply informed account of what physics tells us about ourselves. The result is a vision that is abstract, alien, illuminating, and-Ismael argues-affirmative of most of what we all believe about our own freedom. Written in a jargon-free style, How Physics Makes Us Free provides an accessible and innovative take on a central question of human existence. (shrink)
The idea that there could be spatially extended mereological simples has recently been defended by a number of metaphysicians (Markosian 1998, 2004; Simons 2004; Parsons (2000) also takes the idea seriously). Peter Simons (2004) goes further, arguing not only that spatially extended mereological simples (henceforth just extended simples) are possible, but that it is more plausible that our world is composed of such simples, than that it is composed of either point-sized simples, or of atomless gunk. The difficulty for these (...) views lies in explaining why it is that the various sub-volumes of space occupied by such simples, are not occupied by proper parts of those simples. Intuitively at least, many of us find compelling the idea that spatially extended objects have proper parts at every sub-volume of the region they occupy. It seems that the defender of extended simples must reject a seemingly plausible claim, what Simons calls the geometric correspondence principle (GCP): that any (spatially) extended object has parts that correspond to the parts of the region that it occupies (Simons 2004: 371). We disagree. We think that GCP is a plausible principle. We also think it is plausible that our world is composed of extended simples. We reconcile these two notions by two means. On the one hand we pay closer attention to the physics of our world. On the other hand, we consider what happens when our concept of something—in this case space—contains elements not all of which are realized in anything, but instead key components are realized in different features of the world. (shrink)
In Physical Realization, Sydney Shoemaker considers the question of how physicalism can be true: how can all facts about the world, including mental ones, be constituted by facts about the distribution in the world of physical properties? Physicalism requires that the mental properties of a person are 'realized in' the physical properties of that person, and that all instantiations of properties in macroscopic objects are realized in microphysical states of affairs. Shoemaker offers an account of both these sorts of realization, (...) one which allows the realized properties to be causally efficacious. He also explores the implications of this account for a wide range of metaphysical issues, including the nature of persistence through time, the problem of material constitution, the possibility of emergent properties, and the nature of phenomenal consciousness. (shrink)
The appeal of materialism lies precisely in this, in its claim to be natural metaphysics within the bounds of science. That a doctrine which promises to gratify our ambition (to know the noumenal) and our caution (not to be unscientific) should have great appeal is hardly something to be wondered at. (Putnam (1983), p.210) Materialism says that all facts, in particular all mental facts, obtain in virtue of the spatio- temporal distribution, and properties, of matter. It was, as Putnam says, (...) “metaphysics within the bounds of science”, but only so long as science was thought to say that the world is made out of matter.1 In this century physicists have learned that there is more in the world than matter and, in any case, matter isn’t quite what it seemed to be. For this reason many philosophers who think that metaphysics should be informed by science advocate physicalism in place of materialism. Physicalism claims that all facts obtain in virtue of the distribution of the fundamental entities and properties –whatever they turn out to be- of completed fundamental physics. Later I will discuss a more precise formulation. But not all contemporary philosophers embrace physicalism. Some- and though a minority not a small or un-influential one- think that physicalism is rather the metaphysics for an unjustified scientism; i.e. it is scientistic metaphysics. Those among them that think that physicalism can be clearly formulated think that it characterizes a. (shrink)
The book is drawn from the Tarner lectures, delivered in Cambridge in 1993. It is concerned with the ultimate nature of reality, and how this is revealed by modern physical theories such as relativity and quantum theory. The objectivity and rationality of science are defended against the views of relativists and social constructionists. It is claimed that modern physics gives us a tentative and fallible, but nevertheless rational, approach to the nature of physical reality. The role of subjectivity in (...) science is examined in the fields of relativity theory, statistical mechanics and quantum theory, and recent claims of an essential role for human consciousness in physics is rejected. Prospects for a 'Theory of Everything' are considered, and the related question of how to assess scientific progress is carefully examined. (shrink)
The concept of similar systems arose in physics, and appears to have originated with Newton in the seventeenth century. This chapter provides a critical history of the concept of physically similar systems, the twentieth century concept into which it developed. The concept was used in the nineteenth century in various fields of engineering, theoretical physics and theoretical and experimental hydrodynamics. In 1914, it was articulated in terms of ideas developed in the eighteenth century and used in nineteenth century (...) mathematics and mechanics: equations, functions and dimensional analysis. The terminology physically similar systems was proposed for this new characterization of similar systems by the physicist Edgar Buckingham. Related work by Vaschy, Bertrand, and Riabouchinsky had appeared by then. The concept is very powerful in studying physical phenomena both theoretically and experimentally. As it is not currently part of the core curricula of STEM disciplines or philosophy of science, it is not as well known as it ought to be. (shrink)
Gualtiero Piccinini articulates and defends a mechanistic account of concrete, or physical, computation. A physical system is a computing system just in case it is a mechanism one of whose functions is to manipulate vehicles based solely on differences between different portions of the vehicles according to a rule defined over the vehicles. Physical Computation discusses previous accounts of computation and argues that the mechanistic account is better. Many kinds of computation are explicated, such as digital vs. analog, serial vs. (...) parallel, neural network computation, program-controlled computation, and more. Piccinini argues that computation does not entail representation or information processing although information processing entails computation. Pancomputationalism, according to which every physical system is computational, is rejected. A modest version of the physical Church-Turing thesis, according to which any function that is physically computable is computable by Turing machines, is defended. (shrink)
Quantum physics is believed to be the fundamental theory underlying our understanding of the physical universe. However, it is based on concepts and principles that have always been difficult to understand and controversial in their interpretation. This book aims to explain these issues using a minimum of technical language and mathematics. After a brief introduction to the ideas of quantum physics, the problems of interpretation are identified and explained. The rest of the book surveys, describes and criticises a (...) range of suggestions that have been made with the aim of resolving these problems; these include the traditional, or 'Copenhagen' interpretation, the possible role of the conscious mind in measurement, and the postulate of parallel universes. This new edition has been revised throughout to take into account developments in this field over the past fifteen years, including the idea of 'consistent histories' to which a completely new chapter is devoted. (shrink)
Presents a history of physics from the dawn of science to the present through coverage of one hundred scientific breakthroughs in the discipline, including force and inertia, hidden heat, the Doppler effect, cloud chambers, and string theory.
Much research on cognitive development focuses either on early-emerging domain-specific knowledge or domain-general learning mechanisms. However, little research examines how these sources of knowledge interact. Previous research suggests that young infants can make inferences from samples to populations (Xu & Garcia, 2008) and 11- to 12.5-month-old infants can integrate psychological and physical knowledge in probabilistic reasoning (Teglas, Girotto, Gonzalez, & Bonatti, 2007; Xu & Denison, 2009). Here, we ask whether infants can integrate a physical constraint of immobility into a statistical (...) inference mechanism. Results from three experiments suggest that, first, infants were able to use domain-specific knowledge to override statistical information, reasoning that sometimes a physical constraint is more informative than probabilistic information. Second, we provide the first evidence that infants are capable of applying domain-specific knowledge in probabilistic reasoning by using a physical constraint to exclude one set of objects while computing probabilities over the remaining sets. (shrink)
Human consciousness and reasoning summarize all physical data into laws and create the mathematical theories that lead to predictions. However, the human element that creates the theories is totally absent from the laws and theories themselves. Accordingly, human consciousness and rationality are outside the bounds of science since they cannot be detected by purely physical devices and can only be “detected” by the self in humans. One wonders if notions of information, function, and purpose, can provide explanations of such nonphysical (...) aspects of creation. (shrink)
Stoic physics, based entirely on the continuum concept, is one of the great original contributions in the history of physical systems. Building on The Physical World of the Greeks, the author describes the main aspects of the Stoic continuum theory, traces its origins back to pre-Stoic science and philosophy, and shows the attempts of the Stoics to work out a coherent system of thought that would explain the essential phenomena of the physical world by a few basic assumptions. Originally (...) published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905. (shrink)
Originally published in 1930, Sir Oliver Lodge proposes a connection between physics and philosophy, or as he describes it, a key to unlock the intricate connection between mind and matter. A response to early twentieth century mathematically-led philosophy, Lodge looks at physics from a physical direction rather than from a theoretical model. This title will be of interest to students of philosophy as well physics.
The notion of reality in the physical world has become, during the last century, somewhat problematic. The contrast between the simple and obvious reality of the innumerable instruments, machines, engines, and gadgets produced by our technological industry, which is applied physics, and of the vague and abstract reality of the fundamental concepts of physical science, as forces and fields, particles and quanta, is doubtlessly bewildering. There has already developed a gap between pure and applied science and between the groups (...) of men devoted to the one or the other activity, a separation that may lead to a dangerous estrangement. Physics needs a unifying philosophy, expressible in ordinary language, to bridge this gulf between "reality" as thought of in practice and in theory. I am not a philosopher but a theoretical physicist. I cannot provide a well balanced philosophy of science that would take due account of the ideas developed by differing schools, but I shall endeavor to formulate some ideas which have helped me in my own struggle with these problems. (shrink)
The Physical Intentionality Thesis claims that dispositions share the marks of psychological intentionality; therefore, intentionality is not exclusively a mental phenomenon. Beyond the standard five marks, Alexander Bird introduces two additional marks of intentionality that he argues dispositions do not satisfy: first, thoughts are extrinsic; second, the direction of causation is that objects cause thoughts, not vice versa. In response, this paper identifies two relevant conceptions of extrinsicness, arguing that dispositions show deep parallels to thoughts on both conceptions. Then, it (...) shows that Bird’s discussion of direction of causation overlooks complexities of dispositionality and intentionality that problematize apparent differences between thoughts and dispositions. The paper ends with a discussion of why we find these parallels between thoughts and dispositions. (shrink)
Our ordinary causal concept seems to fit poorly with how our best physics describes the world. We think of causation as a time-asymmetric dependence relation between relatively local events. Yet fundamental physics describes the world in terms of dynamical laws that are, possible small exceptions aside, time symmetric and that relate global time slices. My goal in this paper is to show why we are successful at using local, time-asymmetric models in causal explanations despite this apparent mismatch with (...) fundamental physics. In particular, I will argue that there is an important connection between time asymmetry and locality, namely: understanding the locality of our causal models is the key to understanding why the physical time asymmetries in our universe give rise to time asymmetry in causal explanation. My theory thus provides a unified account of why causation is local and time asymmetric and thereby enables a reply to Russell’s famous attack on causation. (shrink)
Materialist metaphysicians want to side with physics, but not to take sides within physics.If we took literally the claim of a materialist that his position is simply belief in the claim that all is matter, as currently conceived, we would be faced with an insoluble mystery. For how would such a materialist know how to retrench when his favorite scientific hypotheses fail? How did the 18th century materialist know that gravity, or forces in general, were material? How did (...) they know in the 19th century that the electromagnetic field was material, and persisted in this conviction after the aether had been sent packing?The doctrine of physicalism casts a long shadow in contemporary philosophy, configuring all kinds of philosophical issues and projects. Unsurprisingly, its proponents argue that physicalism has all the obvious features necessary for a scientific hypothesis to be in what we will call ‘good standing,’ i.e. being worthy of serious scientific investigation. In fact, many claim much more, arguing that physicalism is a well-confirmed hypothesis and possibly amongst the best of our theories. But, as our second opening passage makes clear, a persistent worry has been that physicalism, or ‘materialism’ as van Fraassen terms it, is an edifice built on sand. For many philosophers question whether the ‘physical’ can be specified at all, or at least in a manner that will produce a physicalism that would be in good standing. (shrink)
Through the use of particular pedagogies and the adoption of new modes of thinking, physical literacy promises more realistic models of physical competence and ...
For many centuries, Aristotle's Physics was the essential starting point for anyone who wished to study the natural sciences. This is the first complete translation since 1930 of Aristotle's key work on science. It presents Aristotle's thought accurately, while at the same time simplifying and expanding the often crabbed and elliptical style of the original, so that it is very much easier to read. A lucid introduction and extensive notes explain the general structure of each section of the book, (...) and shed light on particular problems. (shrink)
A dispositional monist believes that all properties are essentially causal. Recently, an overdetermination argument has been proposed by Trenton Merricks to support nihilism about ordinary objects. I argue that this argument can be extended to target both nihilism about ordinary objects and nihilism about physical particles when dispositional monism is assumed. It implies that a philosopher who both endorses dispositional monism and takes seriously the overdetermination argument should not believe in the existence of physical particles. I end up by discussing (...) possible objections. I suggest, then, that if we live in a world that is inhabited by causal properties but not by chairs and tables, then we also live in a world without electrons and quarks, a world of dispositional properties, that is, a world of causal fields. (shrink)
After briefly discussing the relevance of the notions computation and implementation for cognitive science, I summarize some of the problems that have been found in their most common interpretations. In particular, I argue that standard notions of computation together with a state-to-state correspondence view of implementation cannot overcome difficulties posed by Putnam's Realization Theorem and that, therefore, a different approach to implementation is required. The notion realization of a function, developed out of physical theories, is then introduced as a replacement (...) for the notional pair computation-implementation. After gradual refinement, taking practical constraints into account, this notion gives rise to the notion digital system which singles out physical systems that could be actually used, and possibly even built. (shrink)
This article examines ontological/dynamical aspects of emergence, specifically the micro-macro relation in cases of universal behavior. I discuss superconductivity as an emergent phenomenon, showing why microphysical features such as Cooper pairing are not necessary for deriving characteristic properties such as infinite conductivity. I claim that the difficulties surrounding the thermodynamic limit in explaining phase transitions can be countered by showing how renormalization group techniques facilitate an understanding of the physics behind the mathematics, enabling us to clarify epistemic and ontological (...) aspects of emergence. I close with a discussion of the impact of these issues for questions concerning natural kinds. (shrink)
From an early age, humans know a surprising amount about basic physical principles, such as gravity, force, mass, and shape. We can see this in the way that young children play, and manipulate objects around them. The same behaviour has long been observed in primates - chimpanzees have been shown to possess a remarkable ability to make and use simple tools. But what does this tell us about their inner mental state - do they therefore share the same understanding to (...) that of a young child? Do they understand the simple, underlying physical principles involved? Though some people would say that they do, this book reports groundbreaking research that questions whether this really is the case. -/- Folk Physics for Apes challenges the assumptions so often made about apes. It offers us a rare glimpse into the workings of another mind, examining how apes perceive and understand the physical world - an understanding that appears to be both similar to, and yet profoundly different from our own. The book will have broad appeal to evolutionary psychologists, developmental psychologists, and those interested in the sub-disciplines of cognitive science (philosophy, anthropology). The book additionally offers for developmental psychologists some valuable new non-verbal techniques for assessing causal understanding in young children. (shrink)
Piercing incisively and deeply into the nature of the overlapping of the material andmental realms. Aage Petersen uncovers the reciprocal relations between quantum physics and theconcepts of metaphysics and epistemology, assessing the extent to which each has influenced theother. The author is eminently qualified to undertake this important work, which grew out of hisclose contact with Neils Bohr and his Copenhagen school during the years 1952-1962.Although themathematical formalism of quantum physics has long since been established, the question of (...) itsphysical interpretation is not yet closed, and the question of its philosophical interpretationremains in a formative state. The most widely accepted physical interpretation of the quantalformalism emerged from discussions between Bohr and Heisenberg in the winter of 1926-1927. ThisCopenhagen Interpretation centers around the relations of indeterminacy around the relations ofindeterminacy and the concept of complementarity, and was refined but not radically altered in theyears following, especially during the famous debate with Einstein on the completeness possible inthe description of events. The philosophical interpretation has proceeded along two principal lines:Bohr's emphasis on complementarity as a unifying concept, and Heisenberg's exploration of therelationship of quantum physics to the traditional categories of philosophy.To Bohr's mind, thecentral feature of human knowledge is the distinction between subject and object. The indeterminacyof the placing of the partition between instrument and system, which played so large a part inquantal description was, Bohr believed, an expression of the general relation between the knower andthe knowable. He thus sought to find relationships of complementarity in areas beyond quantumphysics.Quantum physics and traditional philosophy certainly relate enough to interact--even thoughthe effects of interaction may produce uncertain results. Heisenberg's view also emphasizes thatscience describes, not nature itself, but the interplay between nature and man, nature as affectedby man's method of questioning, thus denying the school of philosophical thought that began withDescartes' sharp separation of the World and the I.The author's investigation leads him as well tobelieve that complementarity is deeply linked to the basis of philosophy, but that the details ofthe relationship are so obscure that some other feature of quantum physics that makes amore directconnection with philosophy should be sought. He is led to choose the idea of correspondence as suchfeature. This idea played a key role in the development of the matrix version of the formalism andof the Copenhagen interpretation.Mathematically, the idea of correspondence was seen to imply thatquantal formalisms should emerge as generalizations of classical entities, that matrix mechanics wasa generalization of classical Hamiltonian mechanics. It is in this possibility of treating thetraditional categories of philosophy as limits of a more general scheme, or as analogies of a deeperorder, that the fruitfulness of the correspondence idea lies. (shrink)
We describe a possible physical device that computes a function that cannot be computed by a Turing machine. The device is physical in the sense that it is compatible with General Relativity. We discuss some objections, focusing on those which deny that the device is either a computer or computes a function that is not Turing computable. Finally, we argue that the existence of the device does not refute the Church–Turing thesis, but nevertheless may be a counterexample to Gandy's thesis.
Physical Relativity explores the nature of the distinction at the heart of Einstein's 1905 formulation of his special theory of relativity: that between kinematics and dynamics. Einstein himself became increasingly uncomfortable with this distinction, and with the limitations of what he called the 'principle theory' approach inspired by the logic of thermodynamics. A handful of physicists and philosophers have over the last century likewise expressed doubts about Einstein's treatment of the relativistic behaviour of rigid bodies and clocks in motion in (...) the kinematical part of his great paper, and suggested that the dynamical understanding of length contraction and time dilation intimated by the immediate precursors of Einstein is more fundamental. Harvey Brown both examines and extends these arguments, after giving a careful analysis of key features of the pre-history of relativity theory. He argues furthermore that the geometrization of the theory by Minkowski in 1908 brought illumination, but not a causal explanation of relativistic effects. Finally, Brown tries to show that the dynamical interpretation of special relativity defended in the book is consistent with the role this theory must play as a limiting case of Einstein's 1915 theory of gravity: the general theory of relativity.Appearing in the centennial year of Einstein's celebrated paper on special relativity, Physical Relativity is an unusual, critical examination of the way Einstein formulated his theory. It also examines in detail certain specific historical and conceptual issues that have long given rise to debate in both special and general relativity theory, such as the conventionality of simultaneity, the principle of general covariance, and the consistency or otherwise of the special theory with quantum mechanics. Harvey Brown' s new interpretation of relativity theory will interest anyone working on these central topics in modern physics. (shrink)
Department of History and Philosophy of Science. University of Cambridge, Free School Lane, Cambridge CB2 3RH This paper is concerned with the question of whether atomic particles of the same species, i. e. with the same intrinsic state-independent properties of mass, spin, electric charge, etc, violate the Leibnizian Principle of the Identity of Indiscernibles, in the sense that, while there is more than one of them, their state-dependent properties may also all be the same. The answer depends on what exactly (...) the state-dependent properties of atomic particles are taken to be. On the plausible interpretation that these should comprise all monadic and relational properties that can be expressed in terms of physical magnitudes associated with self-adjoint operators that can be defined for the individual particles, then the weakest form of the Principle is shown to be violated for bosons, fermions and higher-order paraparticles, treated in first quantization *Some of the arguments inn this paper appeared in a thesis submited by one of us (S.F.) In partial fulfilment of the requirements for the PhD degree of the University of London, in 1984. entitled 'Identity and ‘Individuality in Classical and Quantum Physics’. (shrink)
Physics and chemistry underlie the nature of all the world around us, including human brains. Consequently some suggest that in causal terms, physics is all there is. However, we live in an environment dominated by objects embodying the outcomes of intentional design (buildings, computers, teaspoons). The present day subject of physics has nothing to say about the intentionality resulting in existence of such objects, even though this intentionality is clearly causally effective. This paper examines the claim that (...) the underlying physics uniquely causally determines what happens, even though we cannot predict the outcome. It suggests that what occurs is the contextual emergence of complexity: the higher levels in the hierarchy of complexity have autonomous causal powers, functionally independent of lower level processes. This is possible because top-down causation takes place as well as bottom-up action, with higher level contexts determining the outcome of lower level functioning and even modifying the nature of lower level constituents. Stored information plays a key role, resulting in non-linear dynamics that is non-local in space and time. Brain functioning is causally affected by abstractions such as the value of money and the theory of the laser. These are realised as brain states in individuals, but are not equivalent to them. Consequently physics per se cannot causally determine the outcome of human creativity, rather it creates the possibility space allowing human intelligence to function autonomously. The challenge to physics is to develop a realistic description of causality in truly complex hierarchical structures, with top-down causation and memory effects allowing autonomous higher levels of order to emerge with genuine causal powers. (shrink)
Jill North offers answers to questions at the heart of the project of interpreting physics. How do we figure out the nature of the world from a mathematically formulated theory? What do we infer about the world when a physical theory can be mathematically formulated in different ways? The notion of structure is crucial to North's answers.
Metaphysically speaking, just what is trying? There appear to be two options: to place it on the side of the mind or on the side of the world. Volitionists, who think that to try is to engage in a mental act, perhaps identical to willing and perhaps not, take the mind-side option. The second, or world-side option identifies trying to do something with one of the more basic actions by which one tries to do that thing. The trying is then (...) said to be identical with the physical action. -/- After carefully stating the second, world-side view, I produce two arguments against it. The first relies on the fact that if a=b and b=c, then a=c, sometimes put colloquially as: if something is identical to two things, then the two things must be identical to one another. In the case of trying, one might try to do something by performing a plurality of simultaneous actions, a sure sign that the relation between the trying and the plurality of actions by which one tries must be some relation other than identity. -/- The second argument discusses two cases, recorded in William James’ The Principles of Psychology, of a patient who tries but who performs no action whatever. This is sometimes called ‘naked trying’. A recent attempt at denying that there can be such cases of naked trying is examined and dismissed. (shrink)
Two main claims are defended in this paper: first, that typical disputes in the literature about the ontology of physical objects are merely verbal; second, that the proper way to resolve these disputes is by appealing to common sense or ordinary language. A verbal dispute is characterized not in terms of private idiolects, but in terms of different linguistic communities representing different positions. If we imagine a community that makes Chisholm's mereological essentialist assertions, and another community that makes Lewis's four-dimensionalist (...) assertions, the members of each community speak the truth in their respective languages. This follows from an application of the principle of interpretive charity to the two communities. (shrink)
In this paper I set out to solve the problem of how the world as we experience it, full of colours and other sensory qualities, and our inner experiences, can be reconciled with physics. I discuss and reject the views of J. J. C. Smart and Rom Harré. I argue that physics is concerned only to describe a selected aspect of all that there is – the causal aspect which determines how events evolve. Colours and other sensory qualities, (...) lacking causal efficacy, are ignored by physics and cannot be predicted by physical theory. Even though physics is silent about sensory qualities, they nevertheless exist objectively in the world – in one sense of “objective” at least. (shrink)
Statistical mechanics is one of the crucial fundamental theories of physics, and in his new book Lawrence Sklar, one of the pre-eminent philosophers of physics, offers a comprehensive, non-technical introduction to that theory and to attempts to understand its foundational elements. Among the topics treated in detail are: probability and statistical explanation, the basic issues in both equilibrium and non-equilibrium statistical mechanics, the role of cosmology, the reduction of thermodynamics to statistical mechanics, and the alleged foundation of the (...) very notion of time asymmetry in the entropic asymmetry of systems in time. The book emphasises the interaction of scientific and philosophical modes of reasoning, and in this way will interest all philosophers of science as well as those in physics and chemistry concerned with philosophical questions. The book could also be read by an informed general reader interested in the foundations of modern science. (shrink)
Introduction: Historical background.--The law of causality and experience (1908)--The importance of Ernst Mach's philosophy of science for our times (1917)--Physical theories of the twentieth century and school philosophy (1929)--Is there a trend today toward idealism in physics? (1934)--The positivistic and the metaphysical conception of physics (1935)--Logical empiricism and the philosophy of the Soviet Union (1935)--Philosophical misinterpretations of the quantum theory (1936)--What "length" means to the physicist (1937)--Determinism and indeterminism in modern physics (1938)--Ernst Mach and the unity of (...) science (1938). (shrink)
The article sets out a primitive ontology of the natural world in terms of primitive stuff—that is, stuff that has as such no physical properties at all—but that is not a bare substratum either, being individuated by metrical relations. We focus on quantum physics and employ identity-based Bohmian mechanics to illustrate this view, but point out that it applies all over physics. Properties then enter into the picture exclusively through the role that they play for the dynamics of (...) the primitive stuff. We show that such properties can be local, as well as holistic, and discuss two metaphysical options to conceive them, namely, Humeanism and modal realism in the guise of dispositionalism. 1 Introduction2 Primitive Ontology: Primitive Stuff3 The Physics of Matter as Primitive Stuff4 The Humean Best System Analysis of the Dynamical Variables5 Modal Realism about the Dynamical Variables6 Conclusion. (shrink)
Physics and Philosophy of Physics in the Work of Mario Bunge.Gustavo E. Romero - 2019 - In Mario Augusto Bunge, Michael R. Matthews, Guillermo M. Denegri, Eduardo L. Ortiz, Heinz W. Droste, Alberto Cordero, Pierre Deleporte, María Manzano, Manuel Crescencio Moreno, Dominique Raynaud, Íñigo Ongay de Felipe, Nicholas Rescher, Richard T. W. Arthur, Rögnvaldur D. Ingthorsson, Evandro Agazzi, Ingvar Johansson, Joseph Agassi, Nimrod Bar-Am, Alberto Cupani, Gustavo E. Romero, Andrés Rivadulla, Art Hobson, Olival Freire Junior, Peter Slezak, Ignacio Morgado-Bernal, Marta Crivos, Leonardo Ivarola, Andreas Pickel, Russell Blackford, Michael Kary, A. Z. Obiedat, Carolina I. García Curilaf, Rafael González del Solar, Luis Marone, Javier Lopez de Casenave, Francisco Yannarella, Mauro A. E. Chaparro, José Geiser Villavicencio- Pulido, Martín Orensanz, Jean-Pierre Marquis, Reinhard Kahle, Ibrahim A. Halloun, José María Gil, Omar Ahmad, Byron Kaldis, Marc Silberstein, Carolina I. García Curilaf, Rafael González del Solar, Javier Lopez de Casenave, Íñigo Ongay de Felipe & Villavicencio-Pulid (eds.), Mario Bunge: A Centenary Festschrift. Springer Verlag. pp. 289-301.details
This brief review of Mario Bunge’s research on physics begins with an analysis of his masterpiece Foundations of Physics, and then it discusses his other contributions to the philosophy of physics. Following that is a summary of his more recent reactions to scientific discoveries in physics and a discussion of his position about non-locality in quantum mechanics, as well as his changing opinions on the nature of spacetime. The paper ends with a brief assessment of Bunge’s (...) legacy concerning the foundations of physics. (shrink)
Contrary to claims about the irrelevance of philosophy for science, I argue that philosophy has had, and still has, far more influence on physics than is commonly assumed. I maintain that the current anti-philosophical ideology has had damaging effects on the fertility of science. I also suggest that recent important empirical results, such as the detection of the Higgs particle and gravitational waves, and the failure to detect supersymmetry where many expected to find it, question the validity of certain (...) philosophical assumptions common among theoretical physicists, inviting us to engage in a clearer philosophical reflection on scientific method. (shrink)