Results for 'confinement, dark energy, dark matter, entanglement, general relativity, physical and mathematical transcendentalism, quantum information, the Standard model, transcendental invariance'

987 found
Order:
  1. Two deductions: (1) from the totality to quantum information conservation; (2) from the latter to dark matter and dark energy.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (28):1-47.
    The paper discusses the origin of dark matter and dark energy from the concepts of time and the totality in the final analysis. Though both seem to be rather philosophical, nonetheless they are postulated axiomatically and interpreted physically, and the corresponding philosophical transcendentalism serves heuristically. The exposition of the article means to outline the “forest for the trees”, however, in an absolutely rigorous mathematical way, which to be explicated in detail in a future paper. The “two deductions” (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2. This Year's Nobel Prize (2022) in Physics for Entanglement and Quantum Information: the New Revolution in Quantum Mechanics and Science.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 18 (33):1-68.
    The paper discusses this year’s Nobel Prize in physics for experiments of entanglement “establishing the violation of Bell inequalities and pioneering quantum information science” in a much wider, including philosophical context legitimizing by the authority of the Nobel Prize a new scientific area out of “classical” quantum mechanics relevant to Pauli’s “particle” paradigm of energy conservation and thus to the Standard model obeying it. One justifies the eventual future theory of quantum gravitation as belonging to the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  3. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  4. The Symmetries of Quantum and Classical Information. The Ressurrected “Ether" of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (41):1-36.
    The paper considers the symmetries of a bit of information corresponding to one, two or three qubits of quantum information and identifiable as the three basic symmetries of the Standard model, U(1), SU(2), and SU(3) accordingly. They refer to “empty qubits” (or the free variable of quantum information), i.e. those in which no point is chosen (recorded). The choice of a certain point violates those symmetries. It can be represented furthermore as the choice of a privileged reference (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  5. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  6. Problem of the Direct Quantum-Information Transformation of Chemical Substance.Vasil Penchev - 2020 - Computational and Theoretical Chemistry eJournal (Elsevier: SSRN) 3 (26):1-15.
    Arthur Clark and Michael Kube–McDowell (“The Triger”, 2000) suggested the sci-fi idea about the direct transformation from a chemical substance to another by the action of a newly physical, “Trigger” field. Karl Brohier, a Nobel Prize winner, who is a dramatic persona in the novel, elaborates a new theory, re-reading and re-writing Pauling’s “The Nature of the Chemical Bond”; according to Brohier: “Information organizes and differentiates energy. It regularizes and stabilizes matter. Information propagates through matter-energy and mediates the interactions (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  7. Is Mass at Rest One and the Same? A Philosophical Comment: on the Quantum Information Theory of Mass in General Relativity and the Standard Model.Vasil Penchev - 2014 - Journal of SibFU. Humanities and Social Sciences 7 (4):704-720.
    The way, in which quantum information can unify quantum mechanics (and therefore the standard model) and general relativity, is investigated. Quantum information is defined as the generalization of the concept of information as to the choice among infinite sets of alternatives. Relevantly, the axiom of choice is necessary in general. The unit of quantum information, a qubit is interpreted as a relevant elementary choice among an infinite set of alternatives generalizing that of a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  32
    Non-Newtonian Mathematics Instead of Non-Newtonian Physics: Dark Matter and Dark Energy from a Mismatch of Arithmetics.Marek Czachor - 2020 - Foundations of Science 26 (1):75-95.
    Newtonian physics is based on Newtonian calculus applied to Newtonian dynamics. New paradigms such as ‘modified Newtonian dynamics’ change the dynamics, but do not alter the calculus. However, calculus is dependent on arithmetic, that is the ways we add and multiply numbers. For example, in special relativity we add and subtract velocities by means of addition β1⊕β2=tanh+tanh-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _1\oplus \beta _2=\tanh \big +\tanh ^{-1}\big )$$\end{document}, although multiplication β1⊙β2=tanh·tanh-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  9.  49
    About Dark Energy and Dark Matter in a Three-Dimensional Quantum Vacuum Model.Davide Fiscaletti - 2016 - Foundations of Physics 46 (10):1307-1340.
    A model of a three-dimensional quantum vacuum based on Planck energy density as a universal property of a granular space is suggested. The possibility to provide an unifying explanation of dark matter and dark energy as phenomena linked with the fluctuations of the three-dimensional quantum vacuum is explored. The changes and fluctuations of the quantum vacuum energy density generate a curvature of space–time similar to the curvature produced by a “dark energy” density. The formation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Both Classical & Quantum Information; Both Bit & Qubit: Both Physical & Transcendental Time.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (22):1-24.
    Information can be considered as the most fundamental, philosophical, physical and mathematical concept originating from the totality by means of physical and mathematical transcendentalism (the counterpart of philosophical transcendentalism). Classical and quantum information, particularly by their units, bit and qubit, correspond and unify the finite and infinite. As classical information is relevant to finite series and sets, as quantum information, to infinite ones. A fundamental joint relativity of the finite and infinite, of the external (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11.  27
    Are Dark Energy and Dark Matter Different Aspects of the Same Physical Process?Ruth Kastner & Stuart Kauffman - unknown
    It is suggested that the apparently disparate cosmological phenomena attributed to so-called ‘dark matter’ and ‘dark energy’ arise from the same fundamental physical process: the emergence, from the quantum level, of spacetime itself. This creation of spacetime results in metric expansion around mass points in addition to the usual curvature due to stress-energy sources of the gravitational field. A recent modification of Einstein’s theory of general relativity by Chadwick, Hodgkinson, and McDonald incorporating spacetime expansion around (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12. Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then elementary (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  13. The generalization of the Periodic table. The "Periodic table" of dark matter.Vasil Penchev - 2021 - Computational and Theoretical Chemistry eJournal (Elsevier: SSRN) 4 (4):1-12.
    The thesis is: the “periodic table” of “dark matter” is equivalent to the standard periodic table of the visible matter being entangled. Thus, it is to consist of all possible entangled states of the atoms of chemical elements as quantum systems. In other words, an atom of any chemical element and as a quantum system, i.e. as a wave function, should be represented as a non-orthogonal in general (i.e. entangled) subspace of the separable complex Hilbert (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14.  23
    Energy and Uncertainty in General Relativity.F. I. Cooperstock & M. J. Dupre - 2018 - Foundations of Physics 48 (4):387-394.
    The issue of energy and its potential localizability in general relativity has challenged physicists for more than a century. Many non-invariant measures were proposed over the years but an invariant measure was never found. We discovered the invariant localized energy measure by expanding the domain of investigation from space to spacetime. We note from relativity that the finiteness of the velocity of propagation of interactions necessarily induces indefiniteness in measurements. This is because the elements of actual physical systems (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  15. From Dark Energy & Dark Matter to Dark Metric.S. Capozziello, M. De Laurentis, M. Francaviglia & S. Mercadante - 2009 - Foundations of Physics 39 (10):1161-1176.
    We present a new approach to the mathematical objects of General Relativity in terms of which a generic f(R)-gravity theory gravitation is written in a first-order (à la Palatini) formalism, and introduce the concept of Dark Metric which could bypass the emergence of disturbing concepts as Dark Energy and Dark Matter. These issues are related to the fact that General Relativity could not be the definitive theory of Gravitation due to several shortcomings that come (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  16. Why anything rather than nothing? The answer of quantum mechanics.Vasil Penchev - 2019 - In Aleksandar Feodorov & Ivan Mladenov (eds.), Non/Cognate Approaches: Relation & Representation. "Парадигма". pp. 151-172.
    Many researchers determine the question “Why anything rather than nothing?” as the most ancient and fundamental philosophical problem. Furthermore, it is very close to the idea of Creation shared by religion, science, and philosophy, e.g. as the “Big Bang”, the doctrine of “first cause” or “causa sui”, the Creation in six days in the Bible, etc. Thus, the solution of quantum mechanics, being scientific in fact, can be interpreted also philosophically, and even religiously. However, only the philosophical interpretation is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  17. Natural Cybernetics and Mathematical History: The Principle of Least Choice in History.Vasil Penchev - 2020 - Cultural Anthropology (Elsevier: SSRN) 5 (23):1-44.
    The paper follows the track of a previous paper “Natural cybernetics of time” in relation to history in a research of the ways to be mathematized regardless of being a descriptive humanitarian science withal investigating unique events and thus rejecting any repeatability. The pathway of classical experimental science to be mathematized gradually and smoothly by more and more relevant mathematical models seems to be inapplicable. Anyway quantum mechanics suggests another pathway for mathematization; considering the historical reality as dual (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18. On Dark Energy, Weyl’s Geometry, Different Derivations of the Vacuum Energy Density and the Pioneer Anomaly.Carlos Castro - 2007 - Foundations of Physics 37 (3):366-409.
    Two different derivations of the observed vacuum energy density are presented. One is based on a class of proper and novel generalizations of the de Sitter solutions in terms of a family of radial functions R that provides an explicit formula for the cosmological constant along with a natural explanation of the ultraviolet/infrared entanglement required to solve this problem. A nonvanishing value of the vacuum energy density of the order of ${10^{- 123} M_{\rm Planck}^4}$ is derived in agreement with the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20. The Homeomorphism of Minkowski Space and the Separable Complex Hilbert Space: The physical, Mathematical and Philosophical Interpretations.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (3):1-22.
    A homeomorphism is built between the separable complex Hilbert space (quantum mechanics) and Minkowski space (special relativity) by meditation of quantum information (i.e. qubit by qubit). That homeomorphism can be interpreted physically as the invariance to a reference frame within a system and its unambiguous counterpart out of the system. The same idea can be applied to Poincaré’s conjecture (proved by G. Perelman) hinting at another way for proving it, more concise and meaningful physically. Furthermore, the conjecture (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  21. Quantity in Quantum Mechanics and the Quantity of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (47):1-10.
    The paper interprets the concept “operator in the separable complex Hilbert space” (particalry, “Hermitian operator” as “quantity” is defined in the “classical” quantum mechanics) by that of “quantum information”. As far as wave function is the characteristic function of the probability (density) distribution for all possible values of a certain quantity to be measured, the definition of quantity in quantum mechanics means any unitary change of the probability (density) distribution. It can be represented as a particular case (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  22.  12
    The Standard Model's Form Derived From Operator Logic, Superluminal Transformations and Gl(16).Stephen Blaha - 2010 - Pingree-Hill.
    This new edition of work that has evolved over the past seven years completes the derivation of the form of The Standard Model from quantum theory and the extension of the Theory of Relativity to superluminal transformations. The much derided form of The Standard Model is established from a consideration of Lorentz and superluminal relativistic space-time transformations. So much so that other approaches to elementary particle theory pale in comparison. In previous work color SU(3) was derived from (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  23. General relativity and the standard model: Why evidence for one does not disconfirm the other.Nicholaos Jones - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (2):124-132.
    General Relativity and the Standard Model often are touted as the most rigorously and extensively confirmed scientific hypotheses of all time. Nonetheless, these theories appear to have consequences that are inconsistent with evidence about phenomena for which, respectively, quantum effects and gravity matter. This paper suggests an explanation for why the theories are not disconfirmed by such evidence. The key to this explanation is an approach to scientific hypotheses that allows their actual content to differ from their (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  24.  23
    General Relativity and the Standard Model: Why evidence for one does not disconfirm the other.Nicholaos Jones - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (2):124-132.
    General Relativity and the Standard Model often are touted as the most rigorously and extensively confirmed scientific hypotheses of all time. Nonetheless, these theories appear to have consequences that are inconsistent with evidence about phenomena for which, respectively, quantum effects and gravity matter. This paper suggests an explanation for why the theories are not disconfirmed by such evidence. The key to this explanation is an approach to scientific hypotheses that allows their actual content to differ from their (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  21
    Dark Energy Explained by a Bias in the Measurements.Vincent Deledicque - 2022 - Foundations of Physics 52 (3):1-19.
    Typical cosmological models are based on the postulate that space is homogeneous. Space however contains overdense regions in which matter is concentrating, leaving underdense regions of almost void. The evolution of the scale factor of the universe has been established from measurements on SNIa. Since such events occur in regions were matter is present, we may expect that most of the SNIa are located in overdense regions. This means that the evolution of the scale factor has been established in a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  26.  6
    From Objects to Fields, Reinterpreted Contemporary Physics and the Path Toward Quantum Gravity.Bernard Dugué - 2017 - In Information and the World Stage. Hoboken, NJ, USA: Wiley. pp. 85–120.
    Formulating quantum gravity is the greatest challenge that 21st century physics must address. If quantum physics refuses to blend with general relativity, it may be that relativity does not represent a good description of the universe in line with gravity and all its effects. This opens a path for us: first understanding quantum physics and what it reveals about nature and then analyzing the boundaries of relativistic cosmology and reconsidering the whole matter. Physicists consider entanglement as (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  27. The implications of a cosmological information bound for complexity, quantum information and the nature of physical law.Paul Davies - unknown
    The finite age of the universe and the existence of cosmological horizons provides a strong argument that the observable universe represents a finite causal region with finite material and informational resources. A similar conclusion follows from the holographic principle. In this paper I address the question of whether the cosmological information bound has implications for fundamental physics. Orthodox physics is based on Platonism: the laws are treated as infinitely precise, perfect, immutable mathematical relationships that transcend the physical universe (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  28. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29.  22
    The Present Situation in Quantum Theory and its Merging with General Relativity.Andrei Khrennikov - 2017 - Foundations of Physics 47 (8):1077-1099.
    We discuss the problems of quantum theory complicating its merging with general relativity. QT is treated as a general theory of micro-phenomena—a bunch of models. Quantum mechanics and quantum field theory are the most widely known. The basic problems of QM and QFT are considered in interrelation. For QM, we stress its nonrelativistic character and the presence of spooky action at a distance. For QFT, we highlight the old problem of infinities. And this is the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Comparing Cosmological Models.Andrew Holster - manuscript
    The standard model of cosmology is acclaimed in physics as accurate, robust, well-tested, our best scientific theory of the cosmos, but it has had serious anomalies for a while, including the Hubble tension, anomalous galaxies, and the completely unexplained nature of dark energy and dark matter. And lurking behind it all is the lack of a unified theory: General Relativity (GR) and quantum mechanics (QM) are inconsistent. Now startling new observations by the James Webb Space (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  31.  33
    Engineering Entanglement, Conceptualizing Quantum Information.Chen-Pang Yeang - 2011 - Annals of Science 68 (3):325-350.
    Summary Proposed by Einstein, Podolsky, and Rosen (EPR) in 1935, the entangled state has played a central part in exploring the foundation of quantum mechanics. At the end of the twentieth century, however, some physicists and mathematicians set aside the epistemological debates associated with EPR and turned it from a philosophical puzzle into practical resources for information processing. This paper examines the origin of what is known as quantum information. Scientists had considered making quantum computers and employing (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32. Matter as Information. Quantum Information as Matter.Vasil Penchev - 2016 - Nodi. Collana di Storia Della Filosofia 2016 (2):127-138.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Physical Entity as Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (35):1-15.
    Quantum mechanics was reformulated as an information theory involving a generalized kind of information, namely quantum information, in the end of the last century. Quantum mechanics is the most fundamental physical theory referring to all claiming to be physical. Any physical entity turns out to be quantum information in the final analysis. A quantum bit is the unit of quantum information, and it is a generalization of the unit of classical information, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34.  63
    Singularities and scalar fields: Matter theory and general relativity.James Mattingly - 2001 - Proceedings of the Philosophy of Science Association 2001 (3):S395-.
    Philosophers of physics should be more attentive to the role energy conditions play in General Relativity. I review the changing status of energy conditions for quantum fields-presently there are no singularity theorems for semiclassical General Relativity. So we must reevaluate how we understand the relationship between General Relativity, Quantum Field Theory, and singularities. Moreover, on our present understanding of what it is to be a physically reasonable field, the standard energy conditions are violated classically. (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  35.  19
    Granice fizyki w kosmologii.Leszek M. Sokołowski - 2015 - Zagadnienia Filozoficzne W Nauce 59:25-81.
    The message is that physics has an „outward bound” of scientific inquiry in the field of cosmology. I present it in the historical development. Physics and astronomy, developing since the seventeenth century, inherited from the early Greek philosophers the conception that the Universe as a whole is invariable. In nineteenth century this conception in conjunction with the conception of eternity of the Universe gave rise to contradictions with other laws of physics indicating that cosmology is not a branch of physics (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  36.  30
    Transcendental Structuralism in Physics: An alternative to Structural Realism.Michel Bitbol - unknown
    In physics, structures are good candidates for the role of transparadigmatic invariants, which entities can no longer play. This is why structural realism looks more credible than standard entity realism. But why should structures be stable, rather than entities? Here, structural realists have no answer ; they content themselves with the mere observation that this is how things stand. By contrast, transcendental structuralism can easily make sense of this fact. Indeed, it shows that when knowledge bears on phenomena, (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  2
    Relativistic quantum metaphysics: a first principles basis for the standard model of elementary particles.Stephen Blaha - 2008 - Auburn, NH: Pingree-Hill Publishing.
    This book develops new forms of logic: Operator Logic, Probabilistic Operator Logic and Quantum Operator Logic. It then proceeds to create a new view of metaphysics, Relativistic Quantum Metaphysics, for physical Reality. It then derives the form of The Standard Model of Elementary Particles. In particular it derives the origin of parity violation, the origin of the Strong interactions, and the origin of its peculiar symmetry. Also developed are new formalisms for Logic that are of interest (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  38.  10
    Classical and Quantum Cosmology.Gianluca Calcagni - 2017 - Cham: Imprint: Springer.
    This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  39. Reinterpreting Relativity: Using the Equivalence Principle to Explain Away Cosmological Anomalies.Marcus Arvan - manuscript
    According to the standard interpretation of Einstein’s field equations, gravity consists of mass-energy curving spacetime, and an additional physical force or entity—denoted by Λ (the ‘cosmological constant’)—is responsible for the Universe’s metric-expansion. Although General Relativity’s direct predictions have been systematically confirmed, the dominant cosmological model thought to follow from it—the ΛCDM (Lambda cold dark matter) model of the Universe’s history and composition—faces considerable challenges, including various observational anomalies and experimental failures to detect dark matter, (...) energy, or inflation-field candidates. This paper shows that Einstein’s Equivalence Principle entails two possible physical interpretations of General Relativity’s field equations. Although the field equations facially appear to support the standard interpretation—that gravity consists of mass-energy curving spacetime—the field equations can be equivalently understood as holding that gravitational effects instead result from mass-energy accelerating the metric-expansion of a second-order spacetime fabric superimposed upon an absolute, first-order Euclidean space, resulting in the observational appearance of spacetime curvature. This alternative interpretation of relativity is shown to be empirically equivalent to the standard interpretation of relativity, albeit with a changing value for Λ (which is similar to how Λ is understood in the conception of Λ as ‘quintessence’, but in this case takes Λ to be gravity). The reconceptualization is then shown to potentially resolve major observational anomalies for the ΛCDM model, including recent observations conflicting with ΛCDM predictions, as well as failures to directly detect dark matter, dark energy, and inflation field/particle candidates. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark  
  40. God, Logic, and Quantum Information.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-10.
    Quantum information is discussed as the universal substance of the world. It is interpreted as that generalization of classical information, which includes both finite and transfinite ordinal numbers. On the other hand, any wave function and thus any state of any quantum system is just one value of quantum information. Information and its generalization as quantum information are considered as quantities of elementary choices. Their units are correspondingly a bit and a qubit. The course of time (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  41. Tests and Problems of the Standard Model in Cosmology.Martín López-Corredoira - 2017 - Foundations of Physics 47 (6):711-768.
    The main foundations of the standard \CDM model of cosmology are that: the redshifts of the galaxies are due to the expansion of the Universe plus peculiar motions; the cosmic microwave background radiation and its anisotropies derive from the high energy primordial Universe when matter and radiation became decoupled; the abundance pattern of the light elements is explained in terms of primordial nucleosynthesis; and the formation and evolution of galaxies can be explained only in terms of gravitation within a (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42.  60
    On the general covariance and strong equivalence principles in quantum general relativity.Eduard Prugovečki - 1994 - Foundations of Physics 24 (7):989-1076.
    The various physical aspects of the general relativistic principles of covariance and strong equivalence are discussed, and their mathematical formulations are analyzed. All these aspects are shown to be present in classical general relativity, although no contemporary formulation of canonical or covariant quantum gravity has succeeded to incorporate them all. This has, in part, motivated the recent introduction of a geometro-stochastic framework for quantum general relativity, in which the classical frame bundles that underlie (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  43. Orchestrated objective reduction of quantum coherence in brain microtubules: The "orch OR" model for consciousness.Roger Penrose & Stuart Hameroff - 1996 - Mathematics and Computers in Simulation 40:453-480.
    Features of consciousness difficult to understand in terms of conventional neuroscience have evoked application of quantum theory, which describes the fundamental behavior of matter and energy. In this paper we propose that aspects of quantum theory (e.g. quantum coherence) and of a newly proposed physical phenomenon of quantum wave function "self-collapse"(objective reduction: OR -Penrose, 1994) are essential for consciousness, and occur in cytoskeletal microtubules and other structures within each of the brain's neurons. The particular characteristics (...)
     
    Export citation  
     
    Bookmark   7 citations  
  44.  64
    General covariance and the objectivity of space-time point-events: The physical role of gravitational and gauge degrees of freedom - DRAFT.Luca Lusanna & Massimo Pauri - unknown
    This paper deals with a number of technical achievements that are instrumental for a dis-solution of the so-called "Hole Argument" in general relativity. Such achievements include: 1) the analysis of the "Hole" phenomenology in strict connection with the Hamiltonian treatment of the initial value problem. The work is carried through in metric gravity for the class of Christoudoulou-Klainermann space-times, in which the temporal evolution is ruled by the "weak" ADM energy; 2) a re-interpretation of "active" diffeomorphisms as "passive and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  45. Towards a Coherent Theory of Physics and Mathematics: The Theory–Experiment Connection.Paul Benioff - 2005 - Foundations of Physics 35 (11):1825-1856.
    The problem of how mathematics and physics are related at a foundational level is of interest. The approach taken here is to work towards a coherent theory of physics and mathematics together by examining the theory experiment connection. The role of an implied theory hierarchy and use of computers in comparing theory and experiment is described. The main idea of the paper is to tighten the theory experiment connection by bringing physical theories, as mathematical structures over C, the (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  46. What Is Quantum Information? Information Symmetry and Mechanical Motion.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-7.
    The concept of quantum information is introduced as both normed superposition of two orthogonal sub-spaces of the separable complex Hilbert space and in-variance of Hamilton and Lagrange representation of any mechanical system. The base is the isomorphism of the standard introduction and the representation of a qubit to a 3D unit ball, in which two points are chosen. The separable complex Hilbert space is considered as the free variable of quantum information and any point in it (a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  47. General Relativity and Quantum Gravity in Terms of Quantum Measure: A philosophical comment.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (17):1-37.
    The paper discusses the philosophical conclusions, which the interrelation between quantum mechanics and general relativity implies by quantum measure. Quantum measure is three-dimensional, both universal as the Borel measure and complete as the Lebesgue one. Its unit is a quantum bit (qubit) and can be considered as a generalization of the unit of classical information, a bit. It allows quantum mechanics to be interpreted in terms of quantum information, and all physical processes (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  48.  4
    Dark Energy in Gravity.Bernal Thalman - 2024 - Open Journal of Philosophy 14 (1):201-223.
    This paper explores space-time with the Minkowski equation, trying to integrate using the three manuscripts presented to the Open Journal of Philosophy (OJPP) a “new theory of gravity” by introducing the concept of space-time flow. Gravity is a push rather than a pull, an idea presented in the first manuscript. Gravity is the inertia, the shape (frame) of space-time produced by dark energy. The space-time surrounding you provides the force that pushes you upwards, but it doesn’t increase the diameter (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  49. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 2).Vasil Penchev - 2013 - Philosophical Alternatives 22 (3):74-83.
    The text is a continuation of the article of the same name published in the previous issue of Philosophical Alternatives. The philosophical interpretations of the Kochen- Specker theorem (1967) are considered. Einstein's principle regarding the,consubstantiality of inertia and gravity" (1918) allows of a parallel between descriptions of a physical micro-entity in relation to the macro-apparatus on the one hand, and of physical macro-entities in relation to the astronomical mega-entities on the other. The Bohmian interpretation ( 1952) of (...) mechanics proposes that all quantum systems be interpreted as dissipative ones and that the theorem be thus derstood. The conclusion is that the continual representation, by force or (gravitational) field between parts interacting by means of it, of a system is equivalent to their mutual entanglement if representation is discrete. Gravity (force field) and entanglement are two different, correspondingly continual and discrete, images of a single common essence. General relativity can be interpreted as a superluminal generalization of special relativity. The postulate exists of an alleged obligatory difference between a model and reality in science and philosophy. It can also be deduced by interpreting a corollary of the heorem. On the other hand, quantum mechanics, on the basis of this theorem and of V on Neumann's (1932), introduces the option that a model be entirely identified as the modeled reality and, therefore, that absolutely reality be recognized: this is a non-standard hypothesis in the epistemology of science. Thus, the true reality begins to be understood mathematically, i.e. in a Pythagorean manner, for its identification with its mathematical model. A few linked problems are highlighted: the role of the axiom of choice forcorrectly interpreting the theorem; whether the theorem can be considered an axiom; whether the theorem can be considered equivalent to the negation of the axiom. (shrink)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50.  7
    The Problem of Time: Quantum Mechanics Versus General Relativity.Edward Anderson - 2017 - Cham: Imprint: Springer.
    This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
1 — 50 / 987