Results for 'fundamentals of quantum mechanics'

988 found
Order:
  1. How to Make Sense of Quantum Mechanics : Fundamental Physical Theories and Primitive Ontology.Valia Allori - manuscript
    Quantum mechanics has always been regarded as, at best, puzzling, if not contradictory. The aim of the paper is to explore a particular approach to fundamental physical theories, the one based on the notion of primitive ontology. This approach, when applied to quantum mechanics, makes it a paradox-free theory.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  2. Manifestation of Quantum Mechanical Properties of a Proprietor’s Consciousness in Slit Measurements of Economic Systems.Sergiy Melnyk & Igor Tuluzov - 2014 - Neuroquantology 12 (3).
    The present paper discusses the problem of quantum-mechanical properties of a subject’s consciousness. The model of generalized economic measurements is used for the analysis. Two types of such measurements are analyzed – transactions and technologies. Algebraic ratios between the technology-type measurements allow making their analogy with slit experiments in physics. It has been shown that the description of results of such measurements is possible both in classical and in quantum formalism of calculation of probabilities. Thus, the quantum-mechanical (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. On the Metaphysics of Quantum Mechanics.Valia Allori - 2013 - In Soazig Lebihan (ed.), La philosophie de la physique: d'aujourd'hui a demain. Editions Vuibert.
    What is quantum mechanics about? The most natural way to interpret quantum mechanics realistically as a theory about the world might seem to be what is called wave function ontology: the view according to which the wave function mathematically represents in a complete way fundamentally all there is in the world. Erwin Schroedinger was one of the first proponents of such a view, but he dismissed it after he realized it led to macroscopic superpositions (if the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  4.  83
    Interpretations of quantum mechanics: A critical survey.Michele Caponigro - unknown
    This brief survey analyzes the epistemological implications about the role of observer in the interpretations of Quantum Mechanics. As we know, the goal of most interpretations of quantum mechanics is to avoid the apparent intrusion of the observer into the measurement process. In the same time, there are implicit and hidden assumptions about his role. In fact, most interpretations taking as ontic level one of these fundamental concepts as information, physical law and matter bring us to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  5. The Wave Function: Essays in the Metaphysics of Quantum Mechanics.Alyssa Ney & David Albert (eds.) - 2013 - , US: Oxford University Press.
    This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? What is the nature of the fundamental space (or space-time manifold) of quantum mechanics?
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   93 citations  
  6. Essays on the Metaphysics of Quantum Mechanics.Eddy Keming Chen - 2019 - Dissertation, Rutgers University, New Brunswick
    What is the proper metaphysics of quantum mechanics? In this dissertation, I approach the question from three different but related angles. First, I suggest that the quantum state can be understood intrinsically as relations holding among regions in ordinary space-time, from which we can recover the wave function uniquely up to an equivalence class (by representation and uniqueness theorems). The intrinsic account eliminates certain conventional elements (e.g. overall phase) in the representation of the quantum state. It (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  10
    Conceptual foundations of quantum mechanics.Bernard D' Espagnat - 1971 - Redwood City, Calif.: Addison-Wesley, Advanced Book Program.
    Conceptual Foundations of Quantum Mechanics provides a detailed view of the conceptual foundations and problems of quantum physics, and a clear and comprehensive account of the fundamental physical implications of the quantum formalism. This book deals with nonseparability, hidden variable theories, measurement theories and several related problems. Mathematical arguments are presented with an emphasis on simple but adequately representative cases. The conclusion incorporates a description of a set of relationships and concepts that could compose a legitimate (...)
    Direct download  
     
    Export citation  
     
    Bookmark   62 citations  
  8.  92
    Quantum Mechanics and Fundamentality: Naturalizing Quantum Theory between Scientific Realism and Ontological Indeterminacy.Valia Allori (ed.) - 2022 - Cham: Springer.
    This edited collection provides new perspectives on some metaphysical questions arising in quantum mechanics. These questions have been long-standing and are of continued interest to researchers and graduate students working in physics, philosophy of physics and metaphysics. It features contributions from a diverse set of researchers, ranging from senior scholars to junior academics, working in varied fields, from physics to philosophy of physics and metaphysics. The contributors reflect on issues about fundamentality (is quantum theory fundamental? If so, (...)
  9.  27
    On the Strangeness of Quantum Mechanics.Marcello Poletti - 2022 - Foundations of Physics 52 (3):1-7.
    The extravagances of quantum mechanics never fail to enrich daily the debate around natural philosophy. Entanglement, non-locality, collapse, many worlds, many minds, and subjectivism have challenged generations of thinkers. Its approach can perhaps be placed in the stream of quantum logic, in which the “strangeness” of QM is “measured” through the violation of Bell’s inequalities and, from there, attempts an interpretative path that preserves realism yet ends up overturning it, restating the fundamental mechanisms of QM as a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10. Origin of Quantum Mechanical Results and Life: A Clue from Quantum Biology.Biswaranjan Dikshit - 2018 - Neuroquantology 16 (4):26-33.
    Although quantum mechanics can accurately predict the probability distribution of outcomes in an ensemble of identical systems, it cannot predict the result of an individual system. All the local and global hidden variable theories attempting to explain individual behavior have been proved invalid by experiments (violation of Bell’s inequality) and theory. As an alternative, Schrodinger and others have hypothesized existence of free will in every particle which causes randomness in individual results. However, these free will theories have failed (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Einstein’s Boxes: Incompleteness of Quantum Mechanics Without a Separation Principle.Carsten Held - 2015 - Foundations of Physics 45 (9):1002-1018.
    Einstein made several attempts to argue for the incompleteness of quantum mechanics, not all of them using a separation principle. One unpublished example, the box parable, has received increased attention in the recent literature. Though the example is tailor-made for applying a separation principle and Einstein indeed applies one, he begins his discussion without it. An analysis of this first part of the parable naturally leads to an argument for incompleteness not involving a separation principle. I discuss the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  19
    The philosophy of quantum mechanics.D. I. Blokhint︠s︡ev - 1968 - Dordrecht,: D. Reidel.
    The present monograph is devoted to the principal problems of quantum mechanics and is based on the conception first stated in my course on 'Fundamentals of Quantum Mechanics'. The scope and purpose of the above course did not allow some principal questions to be brought out as fully as they deserved, and besides, some important points were only very recently developed to a sufficient extent. This refers especially to the analysis of the action of the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  13.  68
    The Wave Function: Essays on the Metaphysics of Quantum Mechanics.Alyssa Ney & David Albert (eds.) - 2013 - , US: Oxford University Press USA.
    This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? Does quantum mechanics support the existence of any other fundamental entities, e.g. particles? What is the nature of the fundamental space of quantum mechanics? What is the relationship between the fundamental ontology of quantum (...)
  14.  7
    Quantum concepts in physics: an alternative approach to the understanding of quantum mechanics.Malcolm S. Longair - 2013 - New york: Cambridge University Press.
    Written for advanced undergraduates, physicists, and historians and philosophers of physics, this book tells the story of the development of our understanding of quantum phenomena through the extraordinary years of the first three decades of the twentieth century. Rather than following the standard axiomatic approach, this book adopts a historical perspective, explaining clearly and authoritatively how pioneers such as Heisenberg, Schrodinger, Pauli and Dirac developed the fundamentals of quantum mechanics and merged them into a coherent theory, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  15. Copenhagen interpretation of quantum mechanics.Jan Faye - 2008 - Stanford Encyclopedia of Philosophy.
    As the theory of the atom, quantum mechanics is perhaps the most successful theory in the history of science. It enables physicists, chemists, and technicians to calculate and predict the outcome of a vast number of experiments and to create new and advanced technology based on the insight into the behavior of atomic objects. But it is also a theory that challenges our imagination. It seems to violate some fundamental principles of classical physics, principles that eventually have become (...)
    Direct download  
     
    Export citation  
     
    Bookmark   66 citations  
  16.  21
    Foundation of Quantum Mechanics: Once Again.Paul Drechsel - 2019 - Foundations of Science 24 (2):375-389.
    Brukner and Dakić proposed a very simple axiom system as a foundation for quantum theory. It implies the qubit and quantum entanglement. Because this axiom system aims at the core of our understanding of nature, it must be brought to the forum of the philosophy of nature. For philosophical reasons, a completely denied champion of quantum theory, imaginarity i, is added into this axiom system. In relation to Bell’s inequality, this leads to a deeper ‘philosophical’ understanding of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  17.  23
    The Ensemble Interpretation of Quantum Mechanics and Scientific Realism.Alexander Pechenkin - 2021 - Acta Baltica Historiae Et Philosophiae Scientiarum 9 (1):5-17.
    The article takes under consideration three versions of the ensemble interpretation of quantum mechanics and discusses the interconnection of these interpretations with the philosophy of science. To emphasize the specifics of the problem of interpretation of quantum mechanics in the USSR, the Marxist ideology is taken into account. The present paper continues the author’s previous analysis of ensemble interpretations which emerged in the USA and USSR in the first half of the 20th century. The author emphasizes (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  18. Why special relativity should not be a template for a fundamental reformulation of quantum mechanics.Harvey R. Brown & Christopher G. Timpson - 2006 - In William Demopoulos & Itamar Pitowsky (eds.), Physical Theory and its Interpretation. Springer. pp. 29-42.
    In a comparison of the principles of special relativity and of quantum mechanics, the former theory is marked by its relative economy and apparent explanatory simplicity. A number of theorists have thus been led to search for a small number of postulates - essentially information theoretic in nature - that would play the role in quantum mechanics that the relativity principle and the light postulate jointly play in Einstein's 1905 special relativity theory. The purpose of the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  19.  30
    The philosophy of quantum mechanics.D. I. Blokhint︠s︡ev - 1968 - Dordrecht,: D. Reidel.
    The present monograph is devoted to the principal problems of quantum mechanics and is based on the conception first stated in my course on 'Fundamentals of Quantum Mechanics'. The scope and purpose of the above course did not allow some principal questions to be brought out as fully as they deserved, and besides, some important points were only very recently developed to a sufficient extent. This refers especially to the analysis of the action of the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  20.  56
    Quantum Mechanics as an Emergent Property of Ergodic Systems Embedded in the Zero-point Radiation Field.L. de la Peña, A. Valdés-Hernández & A. M. Cetto - 2009 - Foundations of Physics 39 (11):1240-1272.
    The present paper reveals (non-relativistic) quantum mechanics as an emergent property of otherwise classical ergodic systems embedded in a stochastic vacuum or zero-point radiation field (zpf). This result provides a theoretical basis for understanding recent numerical experiments in which a statistical analysis of an atomic electron interacting with the zpf furnishes the quantum distribution for the ground state of the H atom. The action of the zpf on matter is essential within the present approach, but it is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  21. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  22.  28
    Nonrelativistic Quantum Mechanics with Fundamental Environment.Ashot S. Gevorkyan - 2011 - Foundations of Physics 41 (3):509-515.
    Spontaneous transitions between bound states of an atomic system, “Lamb Shift” of energy levels and many other phenomena in real nonrelativistic quantum systems are connected within the influence of the quantum vacuum fluctuations (fundamental environment (FE)) which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system “quantum system (QS) + FE” is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger (L-Sch) type, and is defined on the extended (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  23. Quantum Information Theory & the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2004 - Oxford, GB: Oxford University Press.
    Quantum Information Theory and the Foundations of Quantum Mechanics is a conceptual analysis of one of the most prominent and exciting new areas of physics, providing the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. -/- Beginning from a careful, revisionary, analysis of the concepts of information in the everyday and classical information-theory settings, Christopher G. Timpson argues for an ontologically deflationary account of (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   48 citations  
  24.  39
    Reflections on Zeilinger–Brukner Information Interpretation of Quantum Mechanics.Andrei Khrennikov - 2016 - Foundations of Physics 46 (7):836-844.
    In this short review I present my personal reflections on Zeilinger–Brukner information interpretation of quantum mechanics.In general, this interpretation is very attractive for me. However, its rigid coupling to the notion of irreducible quantum randomness is a very complicated issue which I plan to address in more detail. This note may be useful for general public interested in quantum foundations, especially because I try to analyze essentials of the information interpretation critically. This review is written in (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  25.  9
    Sneaking a Look at God's Cards: Unraveling the Mysteries of Quantum Mechanics.G. C. Ghirardi - 2004
    Quantum mechanics, which describes the behavior of subatomic particles, seems to challenge common sense. Waves behave like particles; particles behave like waves. You can tell where a particle is, but not how fast it is moving--or vice versa. An electron faced with two tiny holes will travel through both at the same time, rather than one or the other. And then there is the enigma of creation ex nihilo, in which small particles appear with their so-called antiparticles, only (...)
    Direct download  
     
    Export citation  
     
    Bookmark   17 citations  
  26.  86
    The Foundations of Quantum Mechanics in the Philosophy of Nature.Grete Hermann & Dirk Lumma - 1999 - The Harvard Review of Philosophy 7 (1):35-44.
    The following article by Grete Hermann arguably occupies an important place in the history of the philosophical interpretation of of quantum mechanics. The purpose of Hermann's writing on natural philosophy is to examine the revision of the law of causality which quantum mechanics seems to require at a fundamental level of theoretical description in physics. It is Hermann's declared intention to show that quantum mechanics does not disprove the concept of causality, "yet has clarified (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  27.  90
    CPT invariance and interpretation of quantum mechanics.O. Costa de Beauregard - 1980 - Foundations of Physics 10 (7-8):513-530.
    This paper is a sequel to various papers by the author devoted to the EPR correlation. The leading idea remains that the EPR correlation (either in its well-known form of nonseparability of future measurements, or in its less well-known time-reversed form of nonseparability of past preparations) displays the intrinsic time symmetry existing in almost all physical theories at the elementary level. But, as explicit Lorentz invariance has been an essential requirement in both the formalization and the conceptualization of my papers, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  28.  44
    Quantum chance and non-locality: probability and non-locality in the interpretations of quantum mechanics.William Michael Dickson - 1998 - New York, NY: Cambridge University Press.
    This book examines in detail two of the fundamental questions raised by quantum mechanics. First, is the world indeterministic? Second, are there connections between spatially separated objects? In the first part, the author examines several interpretations, focusing on how each proposes to solve the measurement problem and on how each treats probability. In the second part, the relationship between probability (specifically determinism and indeterminism) and non-locality is examined, and it is argued that there is a non-trivial relationship between (...)
    Direct download  
     
    Export citation  
     
    Bookmark   25 citations  
  29. The criterion for time symmetry of probabilistic theories and the reversibility of quantum mechanics.Andrew Thomas Holster - 2003 - New Journal of Physics 5 (130).
    Physicists routinely claim that the fundamental laws of physics are 'time symmetric' or 'time reversal invariant' or 'reversible'. In particular, it is claimed that the theory of quantum mechanics is time symmetric. But it is shown in this paper that the orthodox analysis suffers from a fatal conceptual error, because the logical criterion for judging the time symmetry of probabilistic theories has been incorrectly formulated. The correct criterion requires symmetry between future-directed laws and past-directed laws. This criterion is (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  30.  12
    Quantum Causality: Conceptual Issues in the Causal Theory of Quantum Mechanics.Peter J. Riggs - 2009 - Dordrecht: Springer Academic.
    The Causal Theory of Quantum Mechanics provides a better understanding of the fundamentals of quantum mechanics than is provided by Orthodox (i.e. Copenhagen) Quantum Theory by describing micro-phenomena in terms of entities and processes in space and time, thereby embracing causality at the quantum level. The book focuses especially on finding solutions to conceptual issues about the nature of energy, the conservation of energy, forces, and the Exclusion Principle within the context of the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  31.  46
    Grete Hermann, Quantum Mechanics, and the Evolution of Kantian Philosophy.Michael Cuffaro - 2022 - In Jeanne Peijnenburg & Sander Verhaegh (eds.), Women in the History of Analytic Philosophy. Cham: Springer. pp. 114-145.
    This chapter is about Grete Hermann, a philosopher-mathematician who productively and mutually beneficially interacted with the founders of quantum mechanics in the early period of that theory's elaboration. Hermann was a neo-Kantian philosopher. At the heart of Immanuel Kant's critical philosophy lay the question of the conditions under which we can be said to know something objectively, a question Hermann found to be particularly pressing in quantum mechanics. Hermann's own approach to Neo-Kantianism was Neo-Friesian. Jakob Friedrich (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  32. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  33. Zeno Goes to Copenhagen: A Dilemma for Measurement-Collapse Interpretations of Quantum Mechanics.David J. Chalmers & Kelvin J. McQueen - 2023 - In M. C. Kafatos, D. Banerji & D. C. Struppa (eds.), Quantum and Consciousness Revisited. DK Publisher.
    A familiar interpretation of quantum mechanics (one of a number of views sometimes labeled the "Copenhagen interpretation'"), takes its empirical apparatus at face value, holding that the quantum wave function evolves by the Schrödinger equation except on certain occasions of measurement, when it collapses into a new state according to the Born rule. This interpretation is widely rejected, primarily because it faces the measurement problem: "measurement" is too imprecise for use in a fundamental physical theory. We argue (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  34. The nature of Einstein's objections to the Copenhagen interpretation of quantum mechanics.Michel Paty - 1995 - Foundations of Physics 25 (1):183-204.
    In what follows, I examine three main points which may help us to understand the deep nature of Einstein's objections to quantum mechanics. After having played a fundamental pioneer role in the birth of quantum physics, Einstein was, as is well known, far less enthusiastic about its constitution as a quantum mechanics and, since 1927, he constantly argued against the pretention of its founders and proponents to have settled a definitive and complete theory. I emphasize (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  35. Against the 'no-go' philosophy of quantum mechanics.Federico Laudisa - 2014 - European Journal for Philosophy of Science 4 (1):1-17.
    In the area of the foundations of quantum mechanics a true industry appears to have developed in the last decades, with the aim of proving as many results as possible concerning what there cannot be in the quantum realm. In principle, the significance of proving ‘no-go’ results should consist in clarifying the fundamental structure of the theory, by pointing out a class of basic constraints that the theory itself is supposed to satisfy. In the present paper I (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  36. Early greek thought and perspectives for the interpretation of quantum mechanics: Preliminaries to an ontological approach.Karin Verelst & Bob Coecke - 1999 - In S. Smets J. P. Van Bendegem G. C. Cornelis (ed.), Metadebates on Science. VUB-Press & Kluwer.
    It will be shown in this article that an ontological approach for some problems related to the interpretation of Quantum Mechanics could emerge from a re-evaluation of the main paradox of early Greek thought: the paradox of Being and non-Being, and the solutions presented to it by Plato and Aristotle. More well known are the derivative paradoxes of Zeno: the paradox of motion and the paradox of the One and the Many. They stem from what was perceived by (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  37.  12
    Realistic Aspects in the Standard Interpretation of Quantum Mechanics.Claudia Garola & Sandro Sozzo - 2010 - Humana Mente 4 (13).
    The belief that quantum mechanics does not admit a realistic interpretation is widespread. According to some scholars concerned with the foundations of QM all existing interpretations of this theory presuppose instead a form of realism which consists in assuming that QM deals with individual objects and their properties. We uphold in the present paper that the arguments supporting the contextuality and the nonlocality of QM are a significant clue to the implicit adoption of stronger forms of realism. If (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  38.  13
    Probing the meaning of quantum mechanics: superpositions, dynamics, semantics and identity: Quantum Mechanics and Quantum Information: Physical, Philosophical and Logical Approaches, Cagliari, Italy, 23-25 July 2014.Diederik Aerts, Christian de Ronde, Hector Freytes & Roberto Giuntini (eds.) - 2016 - New Jersey: World Scientific.
    This book provides an interdisciplinary approach to one of the most fascinating and important open questions in science: What is quantum mechanics really talking about? In the last decades quantum mechanics has given rise to a new quantum technological era, a revolution taking place today especially within the field of quantum information processing; which goes from quantum teleportation and cryptography to quantum computation. Quantum theory is probably our best confirmed physical theory. (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  39.  36
    Indivisibility, Complementarity and Ontology: A Bohrian Interpretation of Quantum Mechanics.Jairo Roldán-Charria - 2014 - Foundations of Physics 44 (12):1336-1356.
    The interpretation of quantum mechanics presented in this paper is inspired by two ideas that are fundamental in Bohr’s writings: indivisibility and complementarity. Further basic assumptions of the proposed interpretation are completeness, universality and conceptual economy. In the interpretation, decoherence plays a fundamental role for the understanding of measurement. A general and precise conception of complementarity is proposed. It is fundamental in this interpretation to make a distinction between ontological reality, constituted by everything that does not depend at (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Why anything rather than nothing? The answer of quantum mechanics.Vasil Penchev - 2019 - In Aleksandar Feodorov & Ivan Mladenov (eds.), Non/Cognate Approaches: Relation & Representation. "Парадигма". pp. 151-172.
    Many researchers determine the question “Why anything rather than nothing?” as the most ancient and fundamental philosophical problem. Furthermore, it is very close to the idea of Creation shared by religion, science, and philosophy, e.g. as the “Big Bang”, the doctrine of “first cause” or “causa sui”, the Creation in six days in the Bible, etc. Thus, the solution of quantum mechanics, being scientific in fact, can be interpreted also philosophically, and even religiously. However, only the philosophical interpretation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  41. Quantum mechanical theories of consciousness.Henry P. Stapp - 2007 - In Max Velmans & Susan Schneider (eds.), The Blackwell Companion to Consciousness. New York: Wiley-Blackwell. pp. 300--312.
    Quantum mechanical theories of consciousness are contrasted to classical ones. A key difference is that the quantum laws are fundamentally psychophysical and provide an explanation of the causal effect of conscious effort on neural processes, while the laws of classical physics, being purely physical, cannot. The quantum approach provides causal explanations, deduced from the laws of physics, of correlations found in psychology and in neuropsychology.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  42.  41
    Assessing the Montevideo interpretation of quantum mechanics.Jeremy Butterfield - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part A):75-85.
    This paper gives a philosophical assessment of the Montevideo interpretation of quantum theory, advocated by Gambini, Pullin and co-authors. This interpretation has the merit of linking its proposal about how to solve the measurement problem to the search for quantum gravity: namely by suggesting that quantum gravity makes for fundamental limitations on the accuracy of clocks, which imply a type of decoherence that “collapses the wave-packet”. I begin by sketching the topics of decoherence, and quantum clocks, (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  43. On the Verge of Collapse: Modal Interpretations of Quantum Mechanics.Laura Ruetsche - 1995 - Dissertation, University of Pittsburgh
    The conjunction of Schrodinger dynamics and the usual way of thinking about the conditions under which quantum systems exhibit determinate values implies that measurements don't have outcomes. The orthodox fix to this quantum measurement problem is von Neumann's postulate of measurement collapse, which suspends Schrodinger dynamics in measurement contexts. Contending that the fundamental dynamical law of quantum theory breaks down every time we test the theory empirically, the collapse postulate is unsatisfactory. Recently philosophers and physicists have proposed (...)
     
    Export citation  
     
    Bookmark  
  44. From the 'Free Will Theorems' to the 'Choice Ontology' of Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (33):1-10.
    If the concept of “free will” is reduced to that of “choice” all physical world share the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly certain preliminary goal, and the choice is only the mean, by which it can be achieved or not by the one who determines the goal. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. Consequently, and paradoxically, the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  45.  32
    Why Scientific Realists Should Reject the Second Dogma of Quantum Mechanics.Valia Allori - 2020 - In Meir Hemmo & Orly Shenker (eds.), Quantum, Probability, Logic: Itamar Pitowsky’s Work and Influence. Springer. pp. 19-48.
    The information-theoretic approach to quantum mechanics, proposed by Bub and Pitowsky, is a realist approach to quantum theory which rejects the “two dogmas” of quantum mechanics: in this theory measurement results are not analysed in terms of something more fundamental, and the quantum state does not represent physical entities. Bub and Pitowsky’s approach has been criticized because their rejection of the first dogma relies on their argument that kinematic explanations are more satisfactory than dynamical (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. Quantum Foundations of Statistical Mechanics and Thermodynamics.Orly Shenker - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge. pp. Ch. 29.
    Statistical mechanics is often taken to be the paradigm of a successful inter-theoretic reduction, which explains the high-level phenomena (primarily those described by thermodynamics) by using the fundamental theories of physics together with some auxiliary hypotheses. In my view, the scope of statistical mechanics is wider since it is the type-identity physicalist account of all the special sciences. But in this chapter, I focus on the more traditional and less controversial domain of this theory, namely, that of explaining (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  47. Quantum mechanics in terms of realism.Arthur Jabs - 2017 - arXiv.Org.
    We expound an alternative to the Copenhagen interpretation of the formalism of nonrelativistic quantum mechanics. The basic difference is that the new interpretation is formulated in the language of epistemological realism. It involves a change in some basic physical concepts. The ψ function is no longer interpreted as a probability amplitude of the observed behaviour of elementary particles but as an objective physical field representing the particles themselves. The particles are thus extended objects whose extension varies in time (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  48.  33
    Quantum mechanics, emergence, and fundamentality.Peter J. Lewis - 2017 - Philosophica 92 (2).
    Quantum mechanics arguably provides the best evidence we have for strong emergence. Entangled pairs of particles apparently have properties that fail to supervene on the properties of the particles taken individually. But at the same time, quantum mechanics is a terrible place to look for evidence of strong emergence: the interpretation of the theory is so contested that drawing any metaphysical conclusions from it is risky at best. I run through the standard argument for strong emergence (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  49. Can Quantum Mechanics Solve the Hard Problem of Consciousness?Basil J. Hiley & Paavo Pylkkänen - 2022 - In Shan Gao (ed.), Consciousness and Quantum Mechanics. Oxford University Press, Usa.
    The hard problem of consciousness is the problem of explaining how and why physical processes give rise to consciousness (Chalmers 1995). Regardless of many attempts to solve the problem, there is still no commonly agreed solution. It is thus very likely that some radically new ideas are required if we are to make any progress. In this paper we turn to quantum theory to find out whether it has anything to offer in our attempts to understand the place of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  45
    Study on a Possible Darwinian Origin of Quantum Mechanics.C. Baladrón - 2011 - Foundations of Physics 41 (3):389-395.
    A sketchy subquantum theory deeply influenced by Wheeler’s ideas (Am. J. Phys. 51:398–404, 1983) and by the de Broglie-Bohm interpretation (Goldstein in Stanford Encyclopedia of Philosophy, 2006) of quantum mechanics is further analyzed. In this theory a fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine. The evolution of the system would be determined by three Darwinian informational regulating principles. Some progress in the derivation of the postulates of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 988