About this topic
Summary Philosophical discussions about mathematics have a long history, which basically coincides with the history of philosophy. The main historiographic divisions are thus the same as for philosophy in general, i.e. there is philosophy of mathematics in Ancient Philosophy, in Medieval Philosophy, in Early Modern Philosophy (16th-18th centuries), and in Late Modern Philosophy (19th-20th centuries). For a general introduction to the topic, including source material, see R. Marcus and M. McEvoy, eds., A Historical Introduction to the Philosophy of Mathematics: A Reader (Bloomsbury, 2016). For excerpts and translations from crucial authors since Kant, compare W. Ewald, ed., From Kant to Hilbert: A Source Book in the Foundations of Mathematics. Vols. I-II (Oxford University Press, 1996).  And for the late 19th and the first half of the 20th centuries, see P. Benacerraf and H. Putnam, eds., Philosophy of Mathematics: Selected Readings (2nd ed., Cambridge University Press, 1984).
Key works Logicism, formalism, intuitionism, structuralism, foundations, logic, proof, truth, axioms, infinity.
Related categories

419 found
Order:
1 — 50 / 419
  1. Frege's Basic Law V and Cantor's Theorem.Manuel Bremer - manuscript
    The following essay reconsiders the ontological and logical issues around Frege’s Basic Law (V). If focuses less on Russell’s Paradox, as most treatments of Frege’s Grundgesetze der Arithmetik (GGA)1 do, but rather on the relation between Frege’s Basic Law (V) and Cantor’s Theorem (CT). So for the most part the inconsistency of Naïve Comprehension (in the context of standard Second Order Logic) will not concern us, but rather the ontological issues central to the conflict between (BLV) and (CT). These ontological (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  2. On Some Historical Aspects of the Theory of Riemann Zeta Function.Giuseppe Iurato - manuscript
    This comprehensive historical account concerns that non-void intersection region between Riemann zeta function and entire function theory, with a view towards possible physical applications.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3. Wittgenstein's Philosophy of Mathematics.Victor Rodych - unknown - Stanford Encyclopedia of Philosophy.
  4. Conceptions of Infinity and Set in Lorenzen’s Operationist System.Carolin Antos - forthcoming - In Logic, Epistemology and the Unity of Science. Springer.
    In the late 1940s and early 1950s Lorenzen developed his operative logic and mathematics, a form of constructive mathematics. Nowadays this is mostly seen as the precursor to the more well-known dialogical logic and one could assumed that the same philosophical motivations were present in both works. However we want to show that this is not always the case. In particular, we claim, that Lorenzen’s well-known rejection of the actual infinite as stated in Lorenzen (1957) was not a major motivation (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  5. Ms.Natasha Bailie - forthcoming - British Journal for the History of Mathematics.
    The reception of Newton's Principia in 1687 led to the attempt of many European scholars to ‘mathematicise' their field of expertise. An important example of this ‘mathematicisation' lies in the work of Irish-Scottish philosopher Francis Hutcheson, a key figure in the Scottish Enlightenment. This essay aims to discuss the mathematical aspects of Hutcheson's work and its impact on British thought in the following centuries, providing a case in point for the importance of the interactions between mathematics and philosophy throughout time.
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  6. A Neglected Chapter in the History of Philosophy of Mathematical Thought Experiments: Edmond Goblot and His Interpretation by Jean Piaget.Marco Buzzoni - forthcoming - Hopos: The Journal of the International Society for the History of Philosophy of Science.
  7. A Neglected Chapter in the History of Philosophy of Mathematical Thought Experiments: Insights From Jean Piaget’s Reception of Edmond Goblot.Marco Buzzoni - forthcoming - Hopos: The Journal of the International Society for the History of Philosophy of Science:000-000.
  8. Hilbert on Number, Geometry and Continuity.M. Hallett - forthcoming - Bulletin of Symbolic Logic.
    Remove from this list  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Wittgenstein Und Die Philosophie der Mathematik.Bromand Joachim & Reichert Bastian (eds.) - forthcoming - Mentis Verlag.
    Ludwig Wittgenstein selbst hielt seine Überlegungen zur Mathematik für seinen bedeutendsten Beitrag zur Philosophie. So beabsichtigte er zunächst, dem Thema einen zentralen Teil seiner Philosophischen Untersuchungen zu widmen. Tatsächlich wird kaum irgendwo sonst in Wittgensteins Werk so deutlich, wie radikal die Konsequenzen seines Denkens eigentlich sind. Vermutlich deshalb haben Wittgensteins Bemerkungen zur Mathematik unter all seinen Schriften auch den größten Widerstand provoziert: Seine Bemerkungen zu den Gödel’schen Unvollständigkeitssätzen bezeichnete Gödel selbst als Nonsens, und Alan Turing warf Wittgenstein vor, dass aufgrund (...)
    Remove from this list  
    Translate
     
     
    Export citation  
     
    Bookmark  
  10. Wittgenstein, Peirce, and Paradoxes of Mathematical Proof.Sergiy Koshkin - forthcoming - Analytic Philosophy.
    Wittgenstein's paradoxical theses that unproved propositions are meaningless, proofs form new concepts and rules, and contradictions are of limited concern, led to a variety of interpretations, most of them centered on rule-following skepticism. We argue, with the help of C. S. Peirce's distinction between corollarial and theorematic proofs, that his intuitions are better explained by resistance to what we call conceptual omniscience, treating meaning as fixed content specified in advance. We interpret the distinction in the context of modern epistemic logic (...)
    Remove from this list   Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  11. Frege and Peano on Definitions.Edoardo Rivello - forthcoming - In Proceedings of the "Frege: Freunde und Feinde" conference, held in Wismar, May 12-15, 2013.
    Frege and Peano started in 1896 a debate where they contrasted the respective conceptions on the theory and practice of mathematical definitions. Which was (if any) the influence of the Frege-Peano debate on the conceptions by the two authors on the theme of defining in mathematics and which was the role played by this debate in the broader context of their scientific interaction?
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  12. Ian Hacking, Why Is There Philosophy of Mathematics at All? [REVIEW]Max Harris Siegel - forthcoming - Mind 124.
  13. Why Did Weyl Think That Emmy Noether Made Algebra the Eldorado of Axiomatics?Iulian D. Toader - forthcoming - Hopos: The Journal of the International Society for the History of Philosophy of Science:000-000.
    This paper argues that Noether's axiomatic method in algebra cannot be assimilated to Weyl's late view on axiomatics, for his acquiescence to a phenomenological epistemology of correctness led Weyl to resist Noether's principle of detachment.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14. Du Châtelet on the Need for Mathematics in Physics.Aaron Wells - forthcoming - Philosophy of Science.
    There is a tension in Emilie Du Châtelet’s thought on mathematics. The objects of mathematics are ideal or fictional entities; nevertheless, mathematics is presented as indispensable for an account of the physical world. After outlining Du Châtelet’s position, and showing how she departs from Christian Wolff’s pessimism about Newtonian mathematical physics, I show that the tension in her position is only apparent. Du Châtelet has a worked-out defense of the explanatory and epistemic need for mathematical objects, consistent with their metaphysical (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  15. From Phenomenology to the Philosophy of the Concept: Jean Cavaillès as a Reader of Edmund Husserl.Jean-Paul Cauvin - 2020 - Hopos: The Journal of the International Society for the History of Philosophy of Science 10 (1):24-47.
    The article reconstructs Jean Cavaillès’s polemical engagement with Edmund Husserl’s phenomenological philosophy of mathematics. I argue that Cavaillès’s encounter with Husserl clarifies the scope and ambition of Cavaillès’s philosophy of the concept by identifying three interrelated epistemological problems in Husserl’s phenomenological method: (1) Cavaillès claims that Husserl denies a proper content to mathematics by reducing mathematics to logic. (2) This reduction obliges Husserl, in turn, to mischaracterize the significance of the history of mathematics for the philosophy of mathematics. (3) Finally, (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  16. Hermann Cohen’s Principle of the Infinitesimal Method: A Defense.Scott Edgar - 2020 - Hopos: The Journal of the International Society for the History of Philosophy of Science 10 (2):440-470.
    In Bertrand Russell's 1903 Principles of Mathematics, he offers an apparently devastating criticism of the neo-Kantian Hermann Cohen's Principle of the Infinitesimal Method and its History (PIM). Russell's criticism is motivated by his concern that Cohen's account of the foundations of calculus saddles mathematics with the paradoxes of the infinitesimal and continuum, and thus threatens the very idea of mathematical truth. This paper defends Cohen against that objection of Russell's, and argues that properly understood, Cohen's views of limits and infinitesimals (...)
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  17. Arnošt Kolman’s Critique of Mathematical Fetishism.Jakub Mácha & Jan Zouhar - 2020 - In Radek Schuster (ed.), The Vienna Circle in Czechoslovakia. Cham, Switzerland: Springer. pp. 135-150.
    Arnošt Kolman (1892–1979) was a Czech mathematician, philosopher and Communist official. In this paper, we would like to look at Kolman’s arguments against logical positivism which revolve around the notion of the fetishization of mathematics. Kolman derives his notion of fetishism from Marx’s conception of commodity fetishism. Kolman is aiming to show the fact that an entity (system, structure, logical construction) acquires besides its real existence another formal existence. Fetishism means the fantastic detachment of the physical characteristics of real things (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  18. Mathématiques et architecture: le tracé de l’entasis par Nicolas-François Blondel.Dominique Raynaud - 2020 - Archive for History of Exact Sciences 74 (5):445-468.
    In Résolution des quatre principaux problèmes d’architecture then in Cours d’architecture, the architect–mathematician Nicolas-François Blondel addresses one of the most famous architectural problems of all times, that of the reduction in columns. The interest of the text lies in the variety of subjects that are linked to this issue. The text is a response to the challenge launched by Curabelle in 1664 under the name Étrenne à tous les architectes; Blondel mathematicizes the problem in the “style of the Ancients”; The (...)
    Remove from this list   Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  19. Pasch's Empiricism as Methodological Structuralism.Dirk Schlimm - 2020 - In Erich Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. New York: Oxford University Press. pp. 80-105.
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  20. The Origin of Europe and the Esprit de Geometrie.Francesco Tampoia - 2020 - Cosmos and History 16.
    ABSTRACT: In searching for the origin of Europe and the cultural region/continent that we call “Europe”, at first glance we have to consider at least a double view: on the one hand the geographical understanding which indicates a region or a continent; on the other a certain form of identity and culture described and defined as European. Rodolphe Gasché taking hint from Husserl’s passage ‘Europe is not to be construed simply as a geographical and political entity’ states that a rigorous (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  21. The Axiom of Choice and the Road Paved by Sierpiński.Valérie Lynn Therrien - 2020 - Hopos: The Journal of the International Society for the History of Philosophy of Science 10 (2):504-523.
  22. Euclid’s Kinds and (Their) Attributes.Benjamin Wilck - 2020 - History of Philosophy & Logical Analysis 23 (2):362-397.
    Relying upon a very close reading of all of the definitions given in Euclid’s Elements, I argue that this mathematical treatise contains a philosophical treatment of mathematical objects. Specifically, I show that Euclid draws elaborate metaphysical distinctions between substances and non-substantial attributes of substances, different kinds of substance, and different kinds of non-substance. While the general metaphysical theory adopted in the Elements resembles that of Aristotle in many respects, Euclid does not employ Aristotle’s terminology, or indeed, any philosophical terminology at (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23. Research in History and Philosophy of Mathematics: The CSHPM 2018 Volume.Maria Zack & Dirk Schlimm (eds.) - 2020 - New York, USA: Springer Verlag.
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  24. The Idea of Continuity as Mathematical-Philosophical Invariant.Eldar Amirov - 2019 - “Metafizika” Journal 2 (8):p. 87-100.
    The concept of ‘ideas’ plays central role in philosophy. The genesis of the idea of continuity and its essential role in intellectual history have been analyzed in this research. The main question of this research is how the idea of continuity came to the human cognitive system. In this context, we analyzed the epistemological function of this idea. In intellectual history, the idea of continuity was first introduced by Leibniz. After him, this idea, as a paradigm, formed the base of (...)
    Remove from this list   Direct download (2 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  25. Contemporary Reviews of Frege’s Grundgesetze.Philip A. Ebert & Marcus Rossberg - 2019 - In Philip A. Ebert & Marcus Rossberg (eds.), Essays on Frege's Basic Laws of Arithmetic. Oxford: Oxford University Press. pp. 637-652.
    Remove from this list  
     
    Export citation  
     
    Bookmark   2 citations  
  26. Essays on Frege's Basic Laws of Arithmetic.Philip A. Ebert & Marcus Rossberg (eds.) - 2019 - Oxford: Oxford University Press.
    The volume is the first collection of essays that focuses on Gottlob Frege's Basic Laws of Arithmetic (1893/1903), highlighting both the technical and the philosophical richness of Frege's magnum opus. It brings together twenty-two renowned Frege scholars whose contributions discuss a wide range of topics arising from both volumes of Basic Laws of Arithmetic. The original chapters in this volume make vivid the importance and originality of Frege's masterpiece, not just for Frege scholars but for the study of the history (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  27. Mathematical Creation in Frege's Grundgesetze.Philip A. Ebert & Marcus Rossberg - 2019 - In Philip A. Ebert & Marcus Rossberg (eds.), Essays on Frege's Basic Laws of Arithmetic. Oxford: Oxford University Press. pp. 325-342.
  28. Einige Bemerkungen Kurt Gödels zur Mengenlehre.Merlin Carl and Eva-Maria Engelen - 2019 - SieB – Siegener Beiträge Zur Geschichte Und Philosophie der Mathematik 11:143–169.
  29. Philosophische Notizbücher, Band 1: Philosophie I Maximen 0 / Philosophical Notebooks, Volume 1: Philosophy I Maxims 0, Edited by Eva-Maria Engelen, Translated by Merlin Carl, Berlin (De Gruyter) 2019.Kurt Gödel (ed.) - 2019 - Berlin: De Gruyter.
    Over a period of 22 years (1934-1955), the mathematician Kurt Gödel wrote down a series of philosophical reflections, the so-called Philosophical Remarks (Max Phil). They have been handed down in 15 notebooks written in Gabelsberg shorthand. The first notebook contains general philosophical reflections. Notebooks two and three consist of Gödel's individual ethics. The notebooks that follow clearly show that Gödel had designed a philosophy of science in which he placed his discussions of physics, psychology, biology, mathematics, language, theology, and history (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  30. Husserl and Peirce and the Goals of Mathematics.Mirja Hartimo - 2019 - In Ahti-Veikko Pietarinen & Mohammad Shafiei (eds.), Peirce and Husserl: Mutual Insights on Logic, Mathematics and Cognition. Springer Verlag.
    ABSTRACT. The paper compares the views of Edmund Husserl (1859-1938) and Charles Sanders Peirce (1839-1914) on mathematics around the turn of the century. The two share a view that mathematics is an independent and theoretical discipline. Both think that it is something unrelated to how we actually think, and hence independent of psychology. For both, mathematics reveals the objective and formal structure of the world, and both think that modern mathematics is a Platonist enterprise. Husserl and Peirce also share a (...)
    Remove from this list  
     
    Export citation  
     
    Bookmark  
  31. Considerações de Brouwer sobre espaço e infinitude: O idealismo de Brouwer Diante do Problema Apresentado por Dummett Quanto à Possibilidade Teórica de uma Infinitude Espacial.Paulo Júnio de Oliveira - 2019 - Kinesis 11:94-108.
    Resumo Neste artigo, será discutida a noção de “infinitude cardinal” – a qual seria predicada de um “conjunto” – e a noção de “infinitude ordinal” – a qual seria predicada de um “processo”. A partir dessa distinção conceitual, será abordado o principal problema desse artigo, i.e., o problema da possibilidade teórica de uma infinitude de estrelas tratado por Dummett em sua obra Elements of Intuitionism. O filósofo inglês sugere que, mesmo diante dessa possibilidade teórica, deveria ser possível predicar apenas infinitude (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  32. Sofia A. Yanovskaya: The Marxist Pioneer of Mathematical Logic in the Soviet Union.Dimitris Kilakos - 2019 - Transversal: International Journal for the Historiography of Science 6:49-64.
    K. Marx’s 200th jubilee coincides with the celebration of the 85 years from the first publication of his “Mathematical Manuscripts” in 1933. Its editor, Sofia Alexandrovna Yanovskaya (1896–1966), was a renowned Soviet mathematician, whose significant studies on the foundations of mathematics and mathematical logic, as well as on the history and philosophy of mathematics are unduly neglected nowadays. Yanovskaya, as a militant Marxist, was actively engaged in the ideological confrontation with idealism and its influence on modern mathematics and their interpretation. (...)
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  33. Actual and Potential Infinity.Øystein Linnebo & Stewart Shapiro - 2019 - Noûs 53 (1):160-191.
    The notion of potential infinity dominated in mathematical thinking about infinity from Aristotle until Cantor. The coherence and philosophical importance of the notion are defended. Particular attention is paid to the question of whether potential infinity is compatible with classical logic or requires a weaker logic, perhaps intuitionistic.
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  34. Einführung in die Philosophie der Mathematik.Jörg Neunhäuserer - 2019 - Wiesbaden, Deutschland: Springer Spektrum.
    Welche Art von Gegenständen untersucht die Mathematik und in welchem Sinne existieren diese Gegenstände? Warum dürfen wir die Aussagen der Mathematik zu unserem Wissen zählen und wie lassen sich diese Aussagen rechtfertigen? Eine Philosophie der Mathematik versucht solche Fragen zu beantworten. In dieser Einführung stellen wir maßgeblichen Positionen in der Philosophie der Mathematik vor und formulieren die Essenz dieser Positionen in möglichst einfachen Thesen. Der Leser erfährt, auf welche Philosophen eine Position zurückgeht und in welchem historischen Kontext diese entstand. Ausgehend (...)
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  35. Gödel's Argument for Cantorian Cardinality.Matthew W. Parker - 2019 - Noûs 53 (2):375-393.
    On the first page of “What is Cantor's Continuum Problem?”, Gödel argues that Cantor's theory of cardinality, where a bijection implies equal number, is in some sense uniquely determined. The argument, involving a thought experiment with sets of physical objects, is initially persuasive, but recent authors have developed alternative theories of cardinality that are consistent with the standard set theory ZFC and have appealing algebraic features that Cantor's powers lack, as well as some promise for applications. Here we diagnose Gödel's (...)
    Remove from this list   Direct download (10 more)  
     
    Export citation  
     
    Bookmark  
  36. The Later Wittgenstein’s Guide to Contradictions.Alessio Persichetti - 2019 - Synthese 198 (4):3783-3799.
    This paper portrays the later Wittgenstein’s conception of contradictions and his therapeutic approach to them. I will focus on and give relevance to the Lectures on the Foundations of Mathematics, plus the Remarks on the Foundations of Mathematics. First, I will explain why Wittgenstein’s attitude towards contradictions is rooted in: a rejection of the debate about realism and anti-realism in mathematics; and Wittgenstein’s endorsement of logical pluralism. Then, I will explain Wittgenstein’s therapeutic approach towards contradictions, and why it means that (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37. Definition in Mathematics.Carlo Cellucci - 2018 - European Journal for Philosophy of Science 8 (3):605-629.
    In the past century the received view of definition in mathematics has been the stipulative conception, according to which a definition merely stipulates the meaning of a term in other terms which are supposed to be already well known. The stipulative conception has been so absolutely dominant and accepted as unproblematic that the nature of definition has not been much discussed, yet it is inadequate. This paper examines its shortcomings and proposes an alternative, the heuristic conception.
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Husserl on Completeness, Definitely.Mirja Hartimo - 2018 - Synthese 195 (4):1509-1527.
    The paper discusses Husserl’s notion of definiteness as presented in his Göttingen Mathematical Society Double Lecture of 1901 as a defense of two, in many cases incompatible, ideals, namely full characterizability of the domain, i.e., categoricity, and its syntactic completeness. These two ideals are manifest already in Husserl’s discussion of pure logic in the Prolegomena: The full characterizability is related to Husserl’s attempt to capture the interconnection of things, whereas syntactic completeness relates to the interconnection of truths. In the Prolegomena (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  39. Religion and Ideological Confrontations in Early Soviet Mathematics: The Case of P.A. Nekrasov.Dimitris Kilakos - 2018 - Almagest 9 (2):13-38.
    The influence of religious beliefs to several leading mathematicians in early Soviet years, especially among members of the Moscow Mathematical Society, had drawn the attention of militant Soviet marxists, as well as Soviet authorities. The issue has also drawn significant attention from scholars in the post-Soviet period. According to the currently prevailing interpretation, reported purges against Moscow mathematicians due to their religious inclination are the focal point of the relevant history. However, I maintain that historical data arguably offer reasons to (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  40. A Road Map of Dedekind’s Theorem 66.Ansten Klev - 2018 - Hopos: The Journal of the International Society for the History of Philosophy of Science 8 (2):241-277.
    Richard Dedekind’s theorem 66 states that there exists an infinite set. Its proof invokes such apparently nonmathematical notions as the thought-world and the self. This article discusses the content and context of Dedekind’s proof. It is suggested that Dedekind took the notion of the thought-world from Hermann Lotze. The influence of Kant and Bernard Bolzano on the proof is also discussed, and the reception of the proof in the mathematical and philosophical literature is covered in detail.
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  41. Zur Mathematischen Wissenschaftsphilosophie des Marburger Neukantianismus.Thomas Mormann - 2018 - In Christian Damböck (ed.), Philosophie und Wissenschaft bei Hermann Cohen, Veröffentlichungen des Instituts Wiener Kreis, Bd. 28. Wien: Springer. pp. 101 - 133.
    Remove from this list   Direct download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  42. Book Review of “Numbers and the Making of Us: Counting and the Course of Human Cultures” by Caleb Everett.Paula Quinon & Markus Pantsar - 2018 - Journal of Numerical Cognition 4 (2).
  43. Dedekind’s Structuralism: Creating Concepts and Deriving Theorems.Wilfried Sieg & Rebecca Morris - 2018 - In Erich Reck (ed.), Logic, Philosophy of Mathematics, and their History: Essays in Honor W.W. Tait. College Publications.
    Dedekind’s structuralism is a crucial source for the structuralism of mathematical practice—with its focus on abstract concepts like groups and fields. It plays an equally central role for the structuralism of philosophical analysis—with its focus on particular mathematical objects like natural and real numbers. Tensions between these structuralisms are palpable in Dedekind’s work, but are resolved in his essay Was sind und was sollen die Zahlen? In a radical shift, Dedekind extends his mathematical approach to “the” natural numbers. He creates (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  44. Michel Fichant; Sophie Roux . Louis Couturat : Mathématiques, langage, philosophie. 363 pp., apps., bibl., index. Paris: Classiques Garnier, 2017. €46. [REVIEW]David J. Stump - 2018 - Isis 109 (1):195-196.
    Remove from this list   Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  45. On the Intuitionistic Background of Gentzen's 1935 and 1936 Consistency Proofs and Their Philosophical Aspects.Yuta Takahashi - 2018 - Annals of the Japan Association for Philosophy of Science 27:1-26.
    Gentzen's three consistency proofs for elementary number theory have a common aim that originates from Hilbert's Program, namely, the aim to justify the application of classical reasoning to quantified propositions in elementary number theory. In addition to this common aim, Gentzen gave a “finitist” interpretation to every number-theoretic proposition with his 1935 and 1936 consistency proofs. In the present paper, we investigate the relationship of this interpretation with intuitionism in terms of the debate between the Hilbert School and the Brouwer (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46. Research in History and Philosophy of Mathematics The CSHPM 2017 Annual Meeting in Toronto, Ontario.Maria Zack & Dirk Schlimm (eds.) - 2018 - New York: Birkhäuser.
    This volume contains thirteen papers that were presented at the 2017 Annual Meeting of the Canadian Society for History and Philosophy of Mathematics/Société canadienne d’histoire et de philosophie des mathématiques, which was held at Ryerson University in Toronto. It showcases rigorously reviewed modern scholarship on an interesting variety of topics in the history and philosophy of mathematics from Ancient Greece to the twentieth century. -/- A series of chapters all set in the eighteenth century consider topics such as John Marsh’s (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark  
  47. Models in Geometry and Logic: 1870-1920.Patricia Blanchette - 2017 - In Seppälä Niniiluoto (ed.), Logic, Methodology and Philosophy of Science - Proceedings of the 15th International Congress. College Publications. pp. 41-61.
    Remove from this list  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Predicativity and Feferman.Laura Crosilla - 2017 - In Feferman on Foundations. Springer Verlag. pp. 423-447.
    Predicativity is a notable example of fruitful interaction between philosophy and mathematical logic. It originated at the beginning of the 20th century from methodological and philosophical reflections on a changing concept of set. A clarification of this notion has prompted the development of fundamental new technical instruments, from Russell's type theory to an important chapter in proof theory, which saw the decisive involvement of Kreisel, Feferman and Schütte. The technical outcomes of predica-tivity have since taken a life of their own, (...)
    Remove from this list   Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. Hilbert on Consistency as a Guide to Mathematical Reality.Fiona T. Doherty - 2017 - Logique Et Analyse 237:107-128.
  50. A Pluralist Foundation of the Mathematics of the First Half of the Twentieth Century.Antonino Drago - 2017 - Journal of Indian Council of Philosophical Research 34 (2):343-363.
    MethodologyA new hypothesis on the basic features characterizing the Foundations of Mathematics is suggested.Application of the methodBy means of it, the several proposals, launched around the year 1900, for discovering the FoM are characterized. It is well known that the historical evolution of these proposals was marked by some notorious failures and conflicts. Particular attention is given to Cantor's programme and its improvements. Its merits and insufficiencies are characterized in the light of the new conception of the FoM. After the (...)
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 419